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Abstract—Diffuse optical tomography (DOT) is an approach to recover
subsurface structures beneath the skin by measuring light propagation
beneath the surface. The method is based on optimizing the difference
between the images collected and a forward model that accurately
represents diffuse photon propagation within a heterogeneous scatter-
ing medium. However, to date, most works have used a few source-
detector pairs and recover the medium at only a very low resolution.
And increasing the resolution requires prohibitive computations/storage.
In this work, we present a fast imaging and algorithm for high reso-
lution diffuse optical tomography with a line imaging and illumination
system. Key to our approach is a convolution approximation of the
forward heterogeneous scattering model that can be inverted to produce
deeper than ever before structured beneath the surface.We show that
our proposed method can detect reasonably accurate boundaries and
relative depth of heterogeneous structures up to a depth of 8 mm

below highly scattering medium such as milk. This work can extend
the potential of DOT to recover more intricate structures (vessels,tissue,
tumors, etc.) beneath the skin for diagnosing many dermatological and
cardio-vascular conditions.

1 INTRODUCTION

Imaging below the skin and through tissue is important for
diagnosis of several dermatological and cardiovascular conditions.
MRI remains the best current approach to obtain a 3D dimensional
visualization below the skin. But MRI is expensive, requires
visits to a hospital or imaging center, and the patients are highly
inconvenienced. Non-invasive imaging using visible or near-infra-
red light has the potential to make devices portable, safe, and
convenient to use at home or at point-of-care centers.

While light penetrates deep through tissue, it scatters continu-
ously resulting in poor image contrast. This makes it challenging
to recover useful properties about the anatomical structures below
the skin. Further, the anatomical structures include a complex
heterogeneous distribution of tissue, vasculature, tumors (benign
or malignant) that vary in optical properties (density, scattering,
absorption) and depths below the skin. This makes the modeling
of light propagation below skin challenging.

Fortunately, under the highly scattering regime, the photons
can be assumed to be traveling diffusely in the medium and
can be described as a random walk. This has enabled accurate
forward models under diffuse photon propagation. In order to
improve contrast, imaging detectors and sources are placed at
different locations on the skin. This arrangement captures only
indirectly scattered light while eliminating the dominant direct

Fig. 1. Diffuse optical tomography (DOT) with line-scanned camera and
line scanning MEMS projector (left) compared with traditional DOT [1]
with 25 source-detector pairs (right). Both arrangements capture short
range indirect subsurface scattered light but our approach is more effi-
cient and recovers the medium (bottom row) at much higher resolution.
The results shown here are from simulated data. Please refer to Section
6 for more details and real results.

reflection and backscatter 1. The approaches that attempt to invert
the diffusion model with such indirect light imaging systems are
commonly classified as ”Diffuse Optical Tomography” (DOT).
Due to their portability and ease of use, DOT is becoming an
attractive choice over traditional modalities like MRI for cerebral
as well as hemodynamic imaging [26], [35]. More recently, DOT
has been shown to be a promising tool in detecting strokes [9],
breast cancer [19], and thyroid imaging [17].

But there are two important drawbacks to existing DOT
approaches. First, the number of source-detector pairs limits the
form-factor of devices built so far. Even with multiple source-
detector pairs, applying traditional inverse methods for DOT

1. Analogously, in vision and graphics, works measure the Bi-directional
Sub-surface Scattering Reflectance Distribution Function (BSSRDF) [12],
[13], [16], [22], [34]
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results in poor resolution, as shown in the second column of
Figure 1. Second, as the number of source-detector pairs increases,
the computational complexity of the algorithms that recover the
volumetric medium increases prohibitively [7]. In this work, we
present an imaging and algorithmic approach to resolve these fun-
damental drawbacks in DOT systems. Instead of separate detector-
source pairs, we use a high resolution 2D camera and a MEMS
projector to obtain a large number of effective source-detector
pairs, as is commonly done in vision and graphics. This makes the
DOT system much more compact and programmable. Second, to
increase the speed of acquisition, we illuminate a line on the skin
and capture a different line in the sensor, as described in [24]. This
arrangement captures short-range indirect light transport much
faster than point-to-point illumination and sensing. But [24] uses
a rectified configuration where the projector and camera planes
are parallel [28], leading to a low spatial resolution over a large
overlapping stereo volume. We develop a new design with a verged
configuration that enables high spatial resolution imaging within a
small region on the skin (approximately 8 cm x 8 cm).

Using this verged design, we develop an efficient algorithm
that is based on the convolution approximation to the for-
ward model for light propagation in a heterogeneous subsurface
medium. We show that the convolution kernel is independent of
the heterogeneous structure and only depends on the imaging
configuration and the scattering properties of the homogeneous
scattering medium. This allows us to recover the heterogeneous
structures at much higher spatial resolution compared with the
traditional DOT, as shown in the last row of Figure 1.

We evaluate our imaging and algorithmic approaches on
simulated data by borrowing optical parameters of skin, tissue,
blood and vasculature from bio-optical literature [25]. We then
demonstrate our approach with an imaging setup that consists of
a high resolution 2D camera and a custom-built MEMS based
laser projector that are verged to capture near-microscopic spatial
resolution beneath a small area of the surface. This imaging system
is used to recover heterogeneous structures immersed within a
highly scattering medium, such as milk. We show that with
the proposed hardware and algorithm, we can detect reasonably
accurate boundaries of structures up to a depth of 8mm below the
surface of milk. We believe this work represents strong progress
in achieving high-spatial resolution diffuse optical tomography for
the first time at subsurface depths of several millimeters in highly
scattering media.

2 RELATED WORKS

Over the past few years, there have been developments mainly
on two aspects of DOT - improving the instrument system design
[32], [33], [38], and secondly, on theoretical aspects that involves
accurate forward modeling and rendering [2], [4]. The traditional
DOT setup consists of illumination sources and detectors which
are placed on the tissue or skin surface. To improve the recon-
struction of optical parameters of the tissue volume, multiple
configurations of DOT have been explored. In general, it is not
possible to obtain depth information from a single source-detector
system and therefore multiple source-detector configurations are
needed [31].

More recent systems utilize the time-domain (TD) information
of photon propagation. TD-DOT systems consist of a source
emitting a pulse of light and fast-gated detectors that capture the
time-profile of photon arrival. The detectors and the sources are

located on a probe with fixed strategic distances between them,
so that the photons have traversed a certain depth and rejecting
early arriving photons [29]. The most important drawback in these
systems is that the limited number of detectors constrains the
spatial resolution of the reconstructed optical parameters. More
recent DOT systems use structured illumination, which involves
projection of patterns instead of discrete sources [3], [18], [23],
[30]. The light after interaction with the tissue is captured by either
a single-pixel detector or a 2D CCD camera. The use of structured
illumination addresses the issues of low speed and sparse spatial
sampling, which are associated with traditional DOT systems [30].

The reconstruction of optical parameters involves fitting a for-
ward model to the acquired measurements. The forward model can
be obtained either from mesh-based Monte-Carlo simulations [15],
[37] or from a diffusion approximation [5], [6], [14] derived from
radiative-transfer equations (RTE). While the Monte-Carlo based
forward model is more accurate, it requires hours of computing
time. Under Born or Rytov approximations, the forward model
relates the optical parameters and the measurements by a linear set
of equations [27]. Generally, the number of optical parameters to
be reconstructed per voxel is very large compared to the number
of measurements, and therefore the inverse problem is severely
ill-posed. Tikhonov regularizer or sparsity-inducing regularizers
are commonly applied for solving the inverse problem [10], [20].
However, with dense sampling the computational load increases
as the reconstruction process involves inversion of a large-scale
Jacobian matrix [36].

3 FORWARD MODEL

The radiative transfer equation (RTE) [8], [21] describes the light
radiance, which models light propagation, at a particular position
in the scattering medium at a specific time instant. It is generally
difficult to solve the RTE in closed form. When the medium is
highly scattering, as in the case of biological tissue, the diffu-
sion approximation is commonly applied to obtain the diffusion
equation [14], [22]. The photon diffusion equation models the
fluence rate �, that is defined as the total light radiance integrated
over all directions, at a position ~r in the scattering medium for a
continuous intensity light source S, given as,

(�D(~r)r2 + �a(~r))�(~r) = S(~r); (1)

where �a(~r); �0s(~r) are the absorption coefficient and the reduced
scattering coefficient of the medium respectively, and D(~r) =
1=(3(�0s(~r) +�a(~r))) is known as the diffusion coefficient of the
scattering medium. The tissue is commonly modeled as a semi-
infinite scattering homogeneous medium, with the source and the
detector positioned at the air-medium interface. When the light
source is treated as a constant pencil beam source, i.e. S(~r) =
S�(~rs), the solution for fluence rate in (1) for the configuration
in Figure 2 can be written in a analytical form using extrapolated
zero boundary conditions (EBC):

�0(~rd; ~rs) =
S
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; (2)

where, �0(~rd; ~rs) is the fluence rate at detector kept at a position
~rd with a constant source at ~rs [5]. The diffusion coefficient of
the homogeneous medium is denoted by D0 and the term � =p

3�0s�a depend on the optical properties of the homogeneous
scattering medium. The extrapolated boundary condition (EBC)
accounts for the refractive index mismatch of air and the medium.



3

Fig. 2. Source-detector configuration in typical DOT system. The fluence
rate at the detector is given by superposition of the real diffuse source
located z0 below the surface, and a negative image source around the
zero flux line denoted by EBC.

Solving for the boundary condition defines a zero fluence rate line
located zb above the air-medium interface. This boundary line is
imposed by placing a negative image of the source around the
zero-crossing line [5]. The terms r1 and r2 are the distances from
the detector to the real and the negative image source respectively,
and they are defined as:

r1 = j~rs + z0 � ~rdj;
r2 = j~rs � z0 � 2zb � ~rdj;

(3)

where, z0 = 3D is the location of diffused source in the medium.
The term zb is the distance of the zero fluence rate boundary from
the air-medium interface.

Often, we are interested in reconstructing objects like veins
or tumors embedded within human tissue. Typically these objects
have different optical parameters than the background medium. In
the presence of heterogeneity, the change in absorption coefficient
of the medium can be defined as,

�a(~r) = �a0
+ ��a(~r) (4)

where ��a(~r) is the difference in absorption coefficient of the
heterogeneous object over the background medium. We assume
that the change in the reduced scattering coefficient �0s(~r) is
negligible and can be ignored. The resultant fluence rate at the
detector position ~rd for a source at ~rs is written as a linear addition
of fluence rate from homogeneous component �0(~rd; ~rs) and
the change in fluence rate ��(~rd; ~rs) due to the heterogeneous
object,

�(~rd; ~rs) = �0(~rd; ~rs) + ��(~rd; ~rs): (5)

When the change in the absorption coefficient due to the
heterogeneity ��a is small, the change in fluence rate due to the
heterogeneous object, also known as the perturbation component,
is minimal compared to the homogeneous component and can be
ignored using the first Born approximation. The perturbation term
is then given by [5],

��(~rd; ~rs) = �
Z

�0(~rs; ~rj)
��a(~rj)

D0
G0(~rj ; ~rd)d~rj ; (6)

where G0 represents the Green’s function for a homogeneous slab
and is related to �0 in (2) as G0 = D0�0=S.

We acquire images using a CCD camera, which records the
radiant exitance at the surface. The radiant exitance is proportional
to the diffuse reflectance R, which is the projection of current

density along the surface normal of the detector for a unit-power
source,

R(~rd; ~rs) = D0

�
��

�zd

�
zd=0

; (7)

where zd is the z component of the detector location ~rd.
Applying a derivative to (5) with respect to zd and multiplying

by D0, we obtain,

R(~rd; ~rs) = R0(~rd; ~rs) + �R(~rd; ~rs); (8)

where R0 = D0 [��0=�zd]zd=0 is the diffuse reflectance due to
the homogeneous background medium and is obtained by taking
a derivative of �0 in (2) with respect to zd, given by [22],

R0 =
1

4�

"
z0(1 + �r1)e��r1

r3
1

+
(z0 + 2zb)(1 + �r2)e��r2

r3
2

#
(9)

Similarly, �R represents the change in diffuse reflectance for
the heterogeneous object. The expression for �R is obtained by
taking a derivative of (6) with respect to zd and multiplying by
D0, resulting in the following expression,

�R(~rd; ~rs) = �
Z

�0(~rs; ~rj)��a(~rj)

�
�G0(~rj ; ~rd)

�zd

�
zd=0

d~rj ;

= �
Z

�0(~rs; ~rj)��a(~rj)R0(~rj ; ~rd)d~rj :

(10)
We discretize the integral above by dividing the medium into

N voxels, and the optical properties are defined for each voxel.
If the medium is discretized into N voxels with volume of each
voxel as h3, then (10) can be written in the discrete summation
form given by

�R(~rd; ~rs) = �
NX
j=1

P (~rs; ~rj ; ~rd)��a(~rj); (11)

with
P (~rd; ~rj ; ~rs) = �0(~rs; ~rj)R0(~rj ; ~rd)h

3: (12)

The term P (~rs; ~rj ; ~rd) is commonly known as the phase
function defined at each voxel position ~rj in the medium. The
values of the phase function depend on the optical properties of
the background homogeneous medium as well as the location of
the source ~rs and the detector ~rd. Note that the phase function is
independent from the structure of the heterogeneous object.

4 CONVOLUTION APPROXIMATION OF HETEROGE-
NEOUS MODEL

In this section, we describe how the diffuse forward model can be
adapted to our experimental setup. We project a line illumination
on the scene using a laser projector as in [24]. So the light source is
now considered as a slit source instead of a point source. By using
a slit source we reduce the acquisition time since line scanning
is significantly faster than point scanning. We incorporate a slit
source in the forward model by using the linear superposition
principle. The quantities described in the previous section which
are functions of the source location ~rs are now obtained by adding
up the contributions corresponding to all the point sources on the
illumination line.

On the detector side, we use a rolling shutter camera synchro-
nised with the laser projector. The advantage of using a camera
is that each pixel in the camera sensor can now be considered
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Fig. 3. Generation of short range indirect images for a small (a) and a
large (b) pixel to illumination distance � y. The simulated scene consists
of three cylinders embedded in a scattering medium. The offset � y is
kept constant while scanning the entire scene to obtain an image. For a
shorter � y as in (a), the rods are distinctly visible, whereas for longer
� y, the blurring increases with reduction of signal-to-noise ratio.

as an individual detector, and hence we have a detector array
with millions of detectors. Secondly, since the camera sensor
can be considered as a grid array of detectors, we can derive a
convolution form of the forward model, signi�cantly speeding up
the computation time. We acquire several images by varying the
pixel to illumination line distance shown in Figure 3. These images
are referred to as short-range indirect images. The boundaries
of the heterogeneous structures become more blurry in the short
range indirect image as the pixel to illumination line distance� y
increases. The blurring effect is related to� y and the depth of the
structures. This is similar to the depth from (de)focus methods,
where the blurring effect is related to the focal setting of the
camera and the scene depth.

The values of phase function at each voxel for the short-range
indirect images can be interpreted as the number of photons that
have traversed through the corresponding voxel for a given pixel
to illumination line distance. Typically, the most probable path
between a pixel and the source illumination line follows a well-
known ”banana shape” [11] and is shown for different pixel to
illumination line distances in the Figure 4.

We note two important properties of the phase functionP .
Firstly, in case of simple geometry like the semi-in�nite homo-
geneous background medium under consideration, the expression
for the Green's functionG0 as well as� 0 can be written in terms
of relative voxel location rather than the absolute location, i.e,

P(~rd; ~rj ; ~rs) = � 0(~rs � ~rj )R0(~rj � ~rd);

= P(~rj � ~rd; ~rs � ~rd):
(13)

Secondly, we note that the values of the phase function decays
fast spatially as the distance between a voxel and source or
detector position increases. Hence, we can neglect the contribution
of voxels that are far away from both the illumination line and
the pixel. Since we are using a projected line illumination as our

Fig. 4. Visualization of phase function for different pixel to illumination
line distance in y-z plane (top row), and x-y plane (bottom row). S
and D represents the illumination line and pixel location respectively.
As the pixel to illumination line distance increases, the photons tend to
travel deeper into the scattering medium but leads to reduced number
of photons reaching the pixel, thereby reducing the signal-to-noise ratio.

light source, we approximate the phase function in (13) by the
summation of truncated phase function for each source point along
the illumination line. Additionally, as evident from the �gure, the
contribution of light from the illumination line to a center pixel is
dominant only near the center of the illumination line, and hence
we can use a spatially-invariant phase kernel� . We de�ne the pixel
to illumination line distance� y = ys � yd, whereys andyd are
they component of illumination row~rs and the pixel location~rd
respectively. The phase kernel for a line illumination can then be
written as,

� (~rj � ~rd; � y) =
X

~r s

P(~rj � ~rd; ~rs � ~rd); (14)

where the summation over~rs is for all the point sources lying
on the illumination line. In the following, we will denote the
phase kernel as� (� y) for denotation simplicity unless the spatial
dependency needs to be emphasized.

Similarly, the diffuse re�ectanceR(~rd; ~rs), the change in
diffuse re�ectance � R(~rd; ~rs) and the homogeneous diffuse
re�ectanceR0(~rd; ~rs) in (8) are modi�ed for line illumination
as the sum of contribution from all point sources lying on the
illumination line, and are de�ned asR(~rd; � y), R(~rd; � y) and
R0(~rd; � y) respectively. We denote(xd; yd) as the surface coor-
dinates of the pixel location~rd as shown in Figure 3. If the change
in absorption coef�cient�� a( ~rj ) in (11) is represented by a 3D
volumeQ, then the change in diffuse re�ectance� R in (11) can
now be expressed in a convolution notation as

� R(xd; yd; � y) = �
X

~r s

NX

j =1

P(~rj � ~rd; ~rs � ~rd)�� a(~rj )

= �
NX

j =1

� (~rj � ~rd; � y)�� a(~rj )

(15)

where� R 2 RM � N is de�ned over a sensor array of dimension
M � N and corresponds to each pixel to illumination line distance
� y as shown in Figure 3. By representing the change of absorption
coef�cient �� a by a 3D volumeQ, we can rewrite (15) as the sum
of a 3D convolution results:

� R(xd; yd; � y) = �
X

z

� (� y) � Q(xd; yd; z) (16)
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The change in absorption coef�cient in the 3D volume is denoted
by Q 2 RM � N � D , whereD is the depth resolution. The 3D
truncated kernel� 2 Rm � n � D is the de�ned for each� y, and
has the same depth resolution as that of the 3D volumeQ. Using
(8), the resultant diffuse re�ectanceR acquired at each pixel to
illumination line distance� y can be written as a linear summation
of the contribution from homogeneous background mediumR0
and the perturbation term due to presence of heterogeneity� R,

R(xd; yd; � y) = R0(xd; yd; � y) �
X

z

� (� y) � Q(xd; yd; z)

whereR 2 RM � N is the diffuse re�ectance on anM � N grid.

4.1 Reconstruction of heterogeneous structure

For the set of captured images which correspond to different pixel
to illumination line � y, we capture a set of short range indirect
imagesI (� y). For the given set of images, we reconstruct the
volumeQ of unknown optical parameters by solving the following
optimization problem,

min
Q

:
Td maxX

� y= Td min

jj I (� y) � l (R0(� y) � � (� y) � Q)jj2
F + � jjQjj1;

(17)
where jj :jjF denotes the Frobenius norm, andl is an unknown
scaling factor which depends on the intensity and width of the
laser pro�le and the sensitivity of the camera. The procedure for
determining this factorl is highlighted in more detail in Section
6:2. We also assume the reconstructed volume to be sparse, which
essentially implies that the heterogeneous object only occupies a
fraction of the total reconstructed volume.

The optimization is done over a range of� y values. For
smaller� y values, the diffusion approximation breaks down, as
the photon propagation is largely governed by single or very few
scattering events. For very large� y, not enough photons reach the
camera pixels, and therefore the measurement images have a poor
signal-to-noise ratio. Therefore, the range of� y values needs to
be chosen appropriately.

If we know the exact optical parameters� 0
s and � a of the

homogeneous background medium, then we can construct the
kernel� (� y) as in (14). However in some cases, the background
optical parameters of the material are not known. In those cases,
we select a homogeneous patch inside the �eld of view, and �t
the pixel intensity measurements withlR0 with respect to the
unknown optical coef�cients as in (9). We then use the estimated
values of the coef�cients to construct the phase kernel� (� y) for
solving the optimization in (17).

We use PyTorch for implementation given it is highly opti-
mized for convolution operations. The running time on a worksta-
tion with TianX GPU is around5 minutes for300 iterations forQ
with a depth resolution of64. The � value in (17) is heuristically
chosen to be0:0001. We start the optimization with an initial
value of all zeros forQ, and the reconstruction accuracy can be
further improved if a better initialization is provided based on prior
knowledge of the scene.

5 HARDWARE

In this section, we describe our imaging setup for capturing short-
range indirect images. In [24], a recti�ed con�guration where

the projector and camera are parallel is used for capturing the
short-range images. That setup leads to a low spatial resolution
over a large overlapping stereo volume. To capture high resolution
images for small area of interest, we need a high spatial resolution
over a smaller overlapping stereo volume. One way to achieve
smaller overlapping stereo volume is to verge the projector and
camera. This motivates us to design a verged setup for capturing
high resolution short-range indirect images.

Our setup consists of a pair of synchronized rolling shutter
camera and a laser projector implemented with Micro-Electro-
Mechanical-Systems (MEMS). Our imaging setup is shown in
Figuer 1 and Figure 6 (a). We use IDS-3950CPv2 industrial cam-
era and Mirrorcle MEMS development kit. The central wavelength
for the laser light is680nm. The MEMS mirror re�ects the laser
beam from the laser diode and the orientation of the MEMS
mirror can be controlled in terms of two rotation axes (vertical
and horizontal). The size of the imaged area on the sample is8
cm by 8 cm. We model the laser diode and MEMS mirror pair
as a pinhole projector whose center of projection is the center of
rotation of the MEMS.

During the imaging process, the projector is scanned through
the epipolar planes of the projector-camera pair. The camera is
synchronized such that the pixels having a pre-de�ned offset from
the corresponding epipolar line on the camera image plane are
exposed. Each offset corresponds to one pixel to illumination line
distance� y as discussed in Section 4. For the physically recti�ed
projector-camera pair as in [24], the epipolar lines on the projector
and camera image are horizontal. This simply corresponds to
illuminating and exposing the corresponding rows of projector
and camera. In contrast, in our setup, the epipolar lines in the
projector and camera are not horizontal due to the verged setup. So
we cannot capture the short range indirect images by illuminating
and exposing corresponding rows. Instead, on the projector side,
we control the angle of the MEMS mirror to scan the light laser
beam across a pencil of epipolar lines with different 2D slopes in
the projector image plane. On the camera side, we interpolate over
offset epipolar lines to get the short range indirect images. As a
special case, for� y = 0 , the interpolated line overlaps with the
epipolar. The resultant image is the direct light image.

Our image setup has smaller FOV than the recti�ed system
in [24] due to the non-zero vergence angle between the project
and camera. As a result, we can place the sample closer to the
camera while the sample can still be illuminated by the projector.
This enables higher image resolution for smaller area of interest
so that more �ne-grained (sub)surface details can be captured.
In Figure 5, we show the images of a paper sticker captured
with different devices. The sticker page with letters is occluded
by several other pages so no letters can be seen under regular
lighting. The occluded letters are visible in the short range indirect
images from both [24] and our setup. Our device has smaller FOV
and higher spatial resolution over the region of interest due to
the verged con�guration. In addition, we have better contrast and
higher SNR because the laser light source used in our setup is of
higher intensity compared to the pico-projector in [24]. The bright
spot in the center and the lines in(d) is due to the re�ection and
inter-re�ections from the protective glass in front of the MEMS
mirror.

5.1 Calibration

The device is mounted vertically above the liquid container as
shown in Figure 6 (a), with no cover above the scattering medium.
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Fig. 5. Images of a paper sticker captured using different devices. The
sticker page with letters is occluded by several other pages so no letters
can be seen under regular lighting. (a) Image captured with cellphone
camera under regular lighting. ; (b) Short-range indirect image captured
with the device in [24]; (c) Enlarged image for the sticker region in (b);
(d) Short-range indirect image captured with our device. Our device has
smaller FOV due to non-zero vergence angle. The images captured with
our device has higher resolution, SNR and contrast as shown in the
insects in (c) and (d). The bright spot in the center and the lines in (d)
is due to the re�ection and inter-re�ections from the protective glass in
front of the MEMS mirror.

Fig. 6. Experiment setup and calibration to compensate the laser-mirror
misalignment and non-linearity of MEMS. (a) The device is mounted
vertically above the sample container, with no cover above the scattering
medium. (b) During MEMS calibration, we consider the misalignment
between the laser and mirror (above) and non-linearity of MEMS me-
chanics. Due to misalignment, the incident laser beam onto the MEMS
mirror will not be perpendicular to the mirror surface and align with the
MEMS rotation center; Due to non-linearity of MEMS mechanics, the
input control signal and degrees of rotation are not linearly related.

Fig. 7. The MEMS-camera pose calibration. We illuminate a plane with
known pose with 2D array of beams as shown in (a) and (b). Given
the plane orientations, we can get the 3D parameters for the rays from
multiple such images. Then we triangulate all the �tted rays to determine
the center of projection for the projector, in our case, the rotation center
for the MEMS mirror.

We model the laser-MEMS as a pinhole projector whose center
of projection is the rotation center of the MEMS mirror. During
the calibration process, we estimate the relative pose between the
MEMS mirror and the camera. For MEMS, we compensate for
the non-linear mapping between the input voltage for the MEMS
and the mirror tilt angle, and account for the mis-alignment of the
MEMS mirror and the laser, as shown in Figure 6 (b).

More speci�cally, we illuminate planes with given poses
relative to the camera with a set of dot patterns. As shown in
Figure 7, given the laser dot images for different plane positions,
we can �t the laser rays in 3D and triangulate the rays to get the
origin of the rays,i.e. the rotation center of the MEMS mirror.
Due to the laser-MEMS misalignment and �tting error for the
rays, the rays will not intersect at one 3D point. We solve a least
square problem for the intersection point where the point to ray
distances are minimized. The �tted rays are also used to account
for the non-linear relation between the MEMS input voltage and
the rotation angle. In calibration, we build a lookup table relating
the input voltage for the MEMS and the rotation angle for the
mirror to account for their non-linear relation. During imaging,
given the target laser ray direction, we can estimate the required
input voltage by interpolating over lookup table.

6 EXPERIMENT RESULTS

6.1 Simulation

We test the proposed algorithm using Monte Carlo rendered
images. For the homogeneous medium, we use the scattering
coef�cients of human skin measured in [22]. The heterogeneous
inclusions are located up to4 mm below the surface. For the
imaging setup, the width of the laser illumination line is1mm .
The distance between the illumination line and the camera pixel
ranges from0 to 15 mm . To make the diffusion approximation
valid for the algorithm, we only use the images with the illumina-
tion to pixel distance� y larger than2 mm .

The simulated direct and global light images are shown in
the �rst two rows in Figure 8. The global light image is the sum
of the images captured with differnt� y's except for � y = 0 .
The inclusions can not be seen in the direct only image. For the
global light image, because highly scattering property of skin, the
contrast is low for some of the deeper inclusions, such as the
solid circle in the right column. This makes the detection and
localization for such objects (e.g. tumor beneath the skin surface)
dif�cult. For each short-range indirect image, the image intensity
is contributed in part by the indirect light that travels from the
illumination line with a preset distance to the imaged scene point.
As a result, compared with the global light image, the contrast of


