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Abstract—When a narrowband coherent wavefront passes
through or reflects off of a scattering medium, the input and
output relationship of the incident field is linear and so can be
described by a transmission matrix (TM). If the TM for a given
scattering medium is known, one can computationally “invert”
the scattering process and image through the medium. In this
work, we investigate the effect of broadband illumination, i.e.,
what happens when the wavefront is only partially coherent?
Can one still measure a TM and “invert” the scattering?

To accomplish this task, we measure TMs using the double
phase retrieval technique, a method which uses phase retrieval
algorithms to avoid difficult-to-capture interferometric measure-
ments. Generally, using the double phase retrieval method re-
quires performing massive amounts of computation. We alleviate
this burden by developing a fast, GPU-accelerated algorithm,
prVAMP, which lets us reconstruct 2562×642 TMs in under five
hours.

After reconstructing several TMs using this method, we find
that, as expected, reducing the coherence of the illumination
significantly restricts our ability to invert the scattering process.
Moreover, we find that past a certain bandwidth an incoherent,
intensity-based scattering model better describes the scattering
process and is easier to invert.

Index Terms—Transmission Matrix, Phase Retrieval, Scatter-
ing.

I. INTRODUCTION

At first glance, imaging through multiple-scattering media
seems like an impossible task. Any light incident on the
media will undergo multiple reflections. Thus, if we illuminate
an object with coherent light, the resulting wavefront will
constructively and destructively interfere with itself, and a
speckle pattern will be produced on the far side of the scatterer.
This speckle pattern generally bears no resemblance to the
original image.

A. Inverse Scattering is the Holy Grail of Imaging

Despite the challenge inherent to imaging through scattering
media, it is a crucial problem within the optics community.
Imaging through scattering media is fundamental to numer-
ous applications including imaging through biological tis-
sues, long-distance imaging through smog, fog, etc., imaging
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through the atmosphere, and more. Accordingly, numerous
attempts have been made to solve the inverse scattering
problem. We list some of them next.

B. Imaging Through Scattering Media Today

Confocal microscopy [1], [2] mitigates the scattering effect
by using a pinhole to ignore scattered, out-of-focus light.
The performance of this method is limited to few attenuation
lengths of scatterings and requires very slow, scanned image
acquisitions.

Time and/or coherence-gating techniques [3], [4], [5], [6],
[7], [8] rely upon the fact that a scattered photon is unlikely
to arrive at the same time as a ballistic photon; a photon that
went to the target and back without scattering. As a result, one
can use pulsed illumination and temporal/coherence gating to
separate the ballistic photons from a region of interest. Gating
is well-suited to rapidly changing scatterers, like fog, and
as it offers rapid acquisition times and does not require the
scattering process to be stable over time. However, because
these systems only measure ballistic photons, they require
powerful and expensive pulsed lasers to image through thick
scatterers.

Multi-slice light propagation [9], [10], [11] is another
method to image through scattering media. As the name
suggests, the multi-slice light-propagation method models a
scattering material as a series of 2D scattering slices between
which light propagates. Rather than blindly mapping inputs to
outputs, the multi-slice propagation method learns a composi-
tion of linear transformations. This method is uniquely suited
to perform 3D reconstructions; moreover, it provides infor-
mation about the actual structure of the scattering material.
However, the multi-slice approach does not model reflections
within the scatterer, and it is unclear how well this method
works with thick scattering materials.

Recently phase retrieval techniques are used for wavefront
sensing through thin scattring media[[12]] and to image rough
distant objects [13], [14], however, when dealing with thin
scattering media, single-shot imaging through scattering media
is possible using memory-effect based techniques [15], [16].
These methods assume that the scattering medium preserves
the strong angular correlation of the speckle patterns; which
implies that, with temporally coherent and spatially incoherent
illumination, the scattering process follows a convolution
model with a speckle-like point spread function. From there
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Fig. 1. A sketch of our experimental setup. An illumination source is modulated by an SLM to form a smiley face, the light field scatters and produces a
speckle pattern, the intensity of the speckle pattern is measured by a camera, and we use phase retrieval algorithms to reconstruct the smiley face from the
speckle pattern.

one can invert the scattering process by estimating the target’s
auto-correlation function and then performing phase retrieval.
This method fails when the scattering medium becomes too
thick for the strong memory effect to hold.

C. Transmission Matrices

The gold standard to image through very thick and stable
scattering media is inverse scattering with optical transmission
matrices (TMs). Unlike many of the aforementioned methods,
inverse scattering with TMs does not require any ballistic
photons and the scattering media does not need to exhibit
the memory effect. However, TM methods need the scattering
media’s behavior to be invariant over time; TM techniques
are not well-suited to dynamic media like fog. Moreover, TM
methods generally assume that you have access to the far side
of the scattering media for calibration, which allows you to
characterize the relation between the input field, on a spatial
light modulator (SLM), and the output field, on a camera.

TM methods are based upon the principle that when dealing
with coherent light, the forward scattering process is linear
with respect to fields, and so the output field is related to
the input field by a matrix A. This matrix is called the
TM. If one first measures the TM, one can then “invert” the
scattering process and image through [17] or even inside [18]
the scattering medium, potentially through the use of phase
retrieval algorithms [19]. The imaging process is illustrated in
Figure 1.

D. Multi-spectral Transmission Matrices

Traditionally, TMs describe the scattering process when
dealing with coherent narrowband light, which lets you ig-
nore the fact that scattering media have spectrally dependent
responses [20]. In a recent work [20], the authors demonstrated
that characterizing scattering with multi-spectral light is also
possible. The key idea is to replace the 2D TM that describes
the scattering process at a fixed wavelength, with a 3D tensor,
which describes the scattering process at multiple wavelengths.
This characterization enables temporal, as well as spatial,
focusing through the scattering media [21].

E. Contributions: Measuring the Effects of Temporal Coher-
ence and a Fast Phase Retrieval Algorithm

In this work, we study how effective a single TM is at
characterizing and inverting the scattering process associated

with a broadband (i.e., partially coherent) illumination source.
In essence, we study how well the narrow-band model can
approximate a broadband system. We show that as the band-
width of the illumination increases, the singular values of the
measured TM decay towards zero and the speckle encodes less
and less information. As the bandwidth increases, we quickly
reach a point at which an incoherent scattering model better
describes the scattering process and is easier to invert.

To carry out this task efficiently, we learn TMs using
the double phase retrieval technique [22], [19]. This method
uses phase retrieval algorithms to avoid difficult-to-capture
interferometric measurements. Unfortunately, existing double
phase retrieval methods require a massive amount of computa-
tion. In this work we have developed a fast, GPU-accelerated
algorithm which lets us reconstruct 2562 � 642 TMs in under
five hours, as opposed to the tens of thousands that would be
required with competing methods. An initial version of this
algorithm was presented in [23].

II. MODELING SCATTERING

In this section, we describe the models underlying TM-
based methods.

A. Narrow-band Illumination

When dealing with completely coherent light, the scattering
process is linear with respect to complex-valued fields. Thus,
the complex field z on the far side of the scattering media is
related to the field x incident on the scattering media via the
complex-valued monochromatic transmission matrix A.

That is,

z = Ax + �F ; (1)

where �F models noise on the field.
Typical cameras capture only intensity information, in

which case the measurement process becomes

y2 = jAx + �F j2 + �I ; (2)

where the square is elementwise and �I models noise on the
intensity measurement. In this work we ignore �I , which we
minimize through long exposures and strong illumination, and
also take the square root of the intensity measurements. Our
simplified measurement model becomes

y = jAx + �j: (3)
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After one measures the TM, potentially using the double
phase retrieval method described in Section III-A, one can
use phase retrieval algorithms to reconstruct a signal x from
measurements y. Thus phase retrieval algorithms can be used
to see through multiple-scattering media.

B. Incoherent Illumination
At the other extreme, with completely incoherent illumina-

tion the scattering process is linear with respect to real-valued
intensities. That is,

y2 = Aintensityx
2 + �: (4)

This makes reconstructing x2 from y2, and thus imaging
through scattering media, a simple least squares problem.
Unfortunately, the real-valued intensity transmission matrix
Aintensity tends to be very poorly conditioned.

C. Multi-spectral Illumination
If one is able to distinguish/measure the various spectral

components of the input and output fields, one can form
a multi-spectral transmission matrix/tensor, A(!k) for k =
1; :::K, and model scattering as

z(!k) = A(!k)x(!k) + �(!k); (5)

for frequencies !1; :::!K . Multi-spectral TMs can enable
spatio-temporal coherent control of broadband light [20],
[21]. However, without access to narrow-band measurements,
A(!k) remains out of reach.

D. Broadband Illumination
For broadband illumination, where all frequency compo-

nents are measured at once, the measurement process is best
described by

y2 =

Z
jz(!k)j2d!k =

Z
jA(!k)x(!k) + �(!k)j2d!k: (6)

The intensities measured at the camera consist of the
superposition of many different frequency components. How-
ever, without applying filters or otherwise capturing spectrally
dependent measurements, these components are indistinguish-
able on the camera.

Thus, while ideally one would learn and invert A(!k)
across many frequencies, we are motivated to learn a single
model for the scattering process and invert this. In effect, we
approximate a broadband scattering model (6) using either
coherent (2) or incoherent (4) models and study how well one
can use said models to image through scattering media. For
small illumination bandwidths, where the spectral bandwidth
remains within the spectral memory effect [20], the coherent
TM model should be quite accurate. However, as we increase
the illumination bandwidth the measurements will have con-
tributions from a diverse and uncorrelated set of narrow-band
TMs and the model should break down. In contrast, increasing
bandwidth should make the incoherent illumination model
more accurate.

In the next section, we describe how we measure the
coherent (complex-valued field) and incoherent (real-valued
intensity) TMs, A and Aintensity.

Fig. 2. Binary calibration patterns placed on the SLM and the corresponding
measurements recorded by the camera. Random calibration patterns give rise
to random uncorrelated speckle patterns.

III. MEASURING FIELD AND INTENSITY TRANSMISSION
MATRICES

TMs are typically measured using holographic interferom-
etry [24]. To learn a TM with interferometry, one illuminates
one pixel of the SLM at a time. For each pixel, one uses
interferometry to record the complex field incident on the
detector. In this way, one is able to directly measure the TM,
one column at a time.1

While effective, interferometric methods are very sensitive
to perturbations; even minute vibrations, such as those caused
by an air conditioning unit turning on and off in a lab, can
be enough to change the interference pattern and thereby kill
this method. This problem becomes particularly pernicious
at higher resolutions where the physical stability requirement
becomes more and more demanding.

In this work, we avoid the challenge of accurately measuring
complex-valued fields by using the double phase retrieval
method [22], [19]. The key idea behind double phase retrieval
is that if one measures a sufficient number of the intensities
of responses to calibration signals, one can use phase retrieval
algorithms to learn the TM.

In this section, we explain double phase retrieval and in-
troduce a new, GPU-accelerated algorithm that vastly reduces
the computation times associated with this method. We also
briefly describe how we measure intensity TMs.

A. Double Phase Retrieval
The double phase retrieval method gets its name from the

fact that it requires performing phase retrieval twice; once for
calibration, i.e., measuring the TM, and once for imaging.

1) Calibration: One first sends a series of calibration
patterns xp 2 RN with p = 1; :::P , through the scattering
media, see Figure 2. For each p, the signal will be transformed
by the TM A 2 CM�N , to produce measurements yp 2 RM+ ,
with

yp = jAxp + �pj;

where �p denotes noise.2 Actual calibration patterns and their
corresponding measurements are illustrated in Fig. 2.

1This is not the only, nor best, way to measure a TM using interferometry.
For instance, [25] more efficiently measures a TM by temporally modulating
the phase of an SLM and capturing a video of a dynamic speckle pattern.

2Multiple sources of noise, for instance leakage across the SLM, contribute
to the noise �p. In this work, we assume that �p follows a white circularly-
symmetric complex Gaussian distribution.
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The sets of calibration, measurement, and noise column
vectors are then concatenated with themselves to form X =�
x1;x2; :::xp

�
2 RN�P , Y =

�
y1;y2; :::yp

�
2 RM�P+ , and

E =
�
�1; �2; :::�p

�
2 CM�P .

In this way, the entire calibration process can be described
by the equation

Y = jAX + Ej:

Taking the transpose of the above equality, one obtains

YH = jXHAH + EH j:

Consider the mth column of YH (this consists of the P
measurements associated with the mth detector pixel)

yHm = jXHaHm + �Hmj; (7)

where aHm and �Hm denote the mth rows of A and E.
Assuming P is sufficiently large (as a rule of thumb P >

4N ), one can apply phase retrieval algorithms to (7) to recover
each row aHm; simply treat yHm as the measurement and XH

as the measurement matrix. This can be repeated for each of
the M rows of A, potentially in parallel, to learn the entire
TM.

2) Imaging: After one has an estimate eA of the TM,
imaging through the scattering medium is straightforward.
Given a speckle pattern y, ones needs only apply phase
retrieval algorithms to the measurements with eA as the known
measurement matrix.

B. prVAMP: A Fast and Robust Phase Retrieval Algorithm

The central challenge to using the double phase retrieval
method in practice is computation times. Experimental systems
often have low signal to noise ratios and when using an am-
plitude SLM the measurement matrix XH is nonzero mean.3

In this context, especially at low sampling rates, few phase
retrieval algorithms perform accurate reconstructions. Unfor-
tunately, the algorithm that works by far the best, prSAMP
[26], is extremely slow; reconstructing one row of a 2562�642

TM with prSAMP takes over an hour.
One way to reduce these computation times is to use

special block-diagonal measurement matrices, but this comes
at a cost in terms of recovery accuracy [27]. We propose a
complementary solution.

In this work, we develop a new algorithm, prVAMP, which
offers the same accuracy as prSAMP, while running hundreds
of times faster. Simulations comparing prVAMP with over a
dozen other phase retrieval algorithms are provided in Ap-
pendix A. In Appendix B we compare prVAMP and prSAMP
with and without the fast, block-diagonal matrices from [27].

prVAMP is a special case of the recently developed Gen-
eralized Vector Approximate Message Passing (GVAMP) [28]
algorithm. GVAMP is an algorithm for computing approxi-
mate minimum means squared error (MMSE) or maximum
a posteriori (MAP) solutions to inverse problems involving

3In our experiments, the elements of XH are i.i.d. Bernoulli distributed
with p = :5. I.e., each element of X is 0 or 1, each with probability 0:5.

Algorithm 1 prVAMP
1: Initialize: r10, p10, 
10, �10

2: for k=0, 1, ..., K do
3: Denoise x:
4: x̂1;k = gx1(r1;k; 
1;k),
5: �1;k = hg0x1(r1k; 
1;k)i
6: r2k = (x̂1;k � �1;kr1k)=(1� �1;k),
7: 
2k = 
1k(1� �1;k)=�1k

8: Denoise z:
9: ẑ1;k = gz1(p1k; �1k),

10: �1k = hg0z1(p1k; �1k)i
11: p2k = (ẑ1k � �1kp1k)=(1� �1k),
12: �2k = �1k(1� �1k)=�1k

13: LMMSE estimation of x:
14: x̂2k = gx2(r2k;p2k; 
2k; �2k),
15: �2k = hg0x2(r2kp2k; 
2k; �2k)i
16: r1;k+1 = (x̂2k � �2kr2k)=(1� �2k),
17: 
1;k+1 = 
2k(1� �2k)=�2k

18: LMMSE estimation of z:
19: ẑ2k = gz2(r2k;p2k; 
2k; �2k),
20: �2k = hg0z2(r2k;p2k; 
2k; �2k)i
21: p1;k+1 = (ẑ2k � �2kp2k)=(1� �2k),
22: �1;k+1 = �k2(1� �2k)=�2k

23: Return x̂1K .

generalized linear measurements (GLMs); defined to be any
measurement of the form

y = Q(z + w) with z = �x; (8)

where � is our measurement matrix (which is a known pattern
XH when calibrating and an estimated TM eA when imaging),
x is our signal of interest, w is noise, and Q(�) denotes a
simple non-linearity. prVAMP is designed for the special case
Q(�) = j � j.

GVAMP can be broadly understood as an extension to
GAMP [29], [30], which infuses the ADMM [31] concept
of variable splitting into the algorithm. This modification
allows GVAMP to handle non-zero-mean, correlated, and ill-
conditioned measurement matrices, which would destabilize
the original GAMP algorithm [32], [33].

The pseudo-code for prVAMP is presented in Algorithm 1.
prVAMP works by first splitting the vectors x and z into two
sets of identical vectors x1 and x2 and z1 and z2. Iterations
of the algorithm then broadly consist of four steps: First,
there are two “denoising” steps which impose priors on x
and z and ensure they are consistent with the measurements
y. Second, there are two linear minimum mean squared error
(LMMSE) estimation steps which ensure the estimates of x
and z are consistent with each other. Within the algorithm
x̂ and ẑ terms are estimates of x and z, r and p terms act
as noisy observations of x and z, the 
 and � terms track
precisions (reciprocals of variances), and the � and � terms
are divergence terms used to estimate these precisions.

We now give explicit forms for the various denoising and
estimation functions listed in Algorithm 1. These expres-
sions correspond to the MMSE form of the algorithm under
i.i.d. Gaussian priors on the signal and noise. In all these
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expressions we have dropped the iteration subscript k for
readability.

1) Denoising Steps: On line 5 the algorithm denoises the
noisy estimate r1 of the signal x with the function gx1(�); that
is, it treats r1 as noisy observation of x with additive white
Gaussian noise with variance 1=
1 and computes the MMSE
estimate. When we a priori assume that x is drawn from an
i.i.d. zero-mean Gaussian distribution with variance 1=�x, this
function becomes

gx1(r1; 
1) = E[x
��r1; 
1] =


1


x + 
1
r1: (9)

With the aforementioned assumptions on the distributions,
gx1(r1; 
1) just scales r1. An expression for the average partial
derivative hg0x1(�)i can be found in [29].

On line 10 the algorithm denoises the noisy estimate p1

of the signal z with the function gz1(�); that is, it treats p1

as noisy observation of z with additive white Gaussian noise
with variance 1=�1 and computes the elementwise MMSE
estimate, under a prior determined by the observation y and the
distribution of the noise w. If we assume that y = jz+wj with
w � CN (0; 1=�wI), where CN denotes a circular Gaussian
distribution (real and imaginary components are i.i.d. with
variance 1

2 1=�w), this function, written elementwise, becomes

gz1;m(p1:m; �1) = E[z1;m

��ym;p1;m; �w; �1] =� y2
m

1 + �1=�w
R0

� 2ymjp1;mj
1=�w + 1=�1

�
+
jp1;mj

�w=�1 + 1

� p1;m

jp1;mj
; (10)

for indices m = 1; ::: M , where R0(�) , I1(�)
I0(�) , where

I0(�) and I1(�) denote zeroth and first order Bessel functions.
This function, which is specific to the non-linearity j � j, is
what distinguishes prVAMP from other GVAMP algorithms.
A derivation of this function and expression for its average
partial derivative hg0z1(�)i can be found in [30].

2) LMMSE Steps: On lines 14 and 19 the algorithm per-
forms MMSE estimation of x and z under the pseudo-priors
that r2 � CN (x; 1=
2) and p2 � CN (z; 1=�2), with �x = z,
using the functions gx2(�) and gz2(�). That is,

gx2(r2;p2; 
2; �2) = E[x
��r2;p2; 
2; �2];

and

gz2(r2;p2; 
2; �2) = E[z
��r2;p2; 
2; �2]:

Because these estimates are linear with respect to r2 and p2,
these are called the LMMSE steps of the algorithm.

The LMMSE steps can be accelerated dramatically if one
first computes a singular value decomposition (SVD) of the
measurement matrix �, with � = USVt; before running the
algorithm. With this decomposition in hand, the gx2(�) and
gz2(�) functions can be written as

gx2(r2;p2; 
2; �2) = VDk(�2StUtp2 + 
2Vtr2); (11)

where Dk denotes an n�n diagonal matrix whose ith diagonal
entry is defined as (�2s2

i + 
2)�1, where si is the ith singular
value of � and

gz2(r2;p2; 
2; �2) = �gx2(r2;p2; 
2; �2): (12)

More information about these functions and expression for
their average partial derivatives can be found in [28].

3) Tuning and Initialization: prVAMP is a Bayesian al-
gorithm that requires priors on the distribution of the signal
and noise. In this work, when reconstructing TMs, we used
the following heuristic to estimate these quantities. We first
computed an initial solution x̂GS, using the Gerchberg-Saxton
PR algorithm [34]. Then, treating this solution as the ground
truth, we estimated the precisions as �w = 1

ky�j�x̂GSjk2 and
�x = 1

var(x̂GS) . We assumed that both x and w were zero-
mean. The same procedure was used for both the calibration
and imaging steps; although we only imaged binary objects,
this fact was not used as a prior within the algorithm.

When reconstructing TMs, we used the following heuristic
to initialize prVAMP. Using the solution provided by GS, we
set r10 = x̂GS, p10 = �x̂GS, 
10 = 1

var(x̂GS) , and �10 =
1

var(�x̂GS) .
4) GPU Acceleration: The prVAMP algorithm consists

mostly of matrix-vector operations. By replacing these matrix-
vector operations with matrix-matrix operations, we can solve
thousands of phase retrieval problems in parallel. These
matrix-matrix operations can be computed very efficiently
using a GPU: Recovering 1000 rows of a 2562 � 642 TM
in sequence on an Intel 6800k CPU takes 300 minutes.
Recovering these rows in parallel on a Pascal Titan X GPU
takes 2 minutes.

To implement prVAMP we modified the original GVAMP
Matlab code. Code demonstrating prVAMP on synthetic data is
available within the GAMP project [35]. Code demonstrating
prVAMP on experimental TM data, using GPU computing, is
available on our website [36].

C. Measuring Intensity Transmission Matrices

To estimate the incoherent, real-valued intensity TM asso-
ciated with a series of measurements y2

p = Aintensityx
2
p + �p,

we assembled the calibration data and the associated mea-
surements into matrices X2H and Y2H (unlike the coherent
model, no elementwise square root was taken). From there
we first formed a maximum likelihood (ML) estimate of the
intensity TM as

AH
intensity, ML = (X2H)yY2H ; (13)

where y denotes pseudo-inverse.
Next, we assumed that the elements of A and � follow an

i.i.d. Gaussian distribution with variances �2
a, �2

� and estimated
these variances using our ML solution: �2

a = var(Aintensity, ML)

and �2
� =

kY2�Aintensity, MLX2k2
2

M . With these priors, the MAP
estimate of A becomes

ÂH
intensity, MAP = arg max

A

�kY2 �AX2k2
F

�2
w

� kAk
2
F

�2
a

; (14)

= (XXH +
�2
w

�2
a

I)�1XYH : (15)

Because solving linear systems is much easier than solving
phase retrieval problems, estimating Aintensity took a few
minutes, as opposed to five hours.

We repeated an analogous process, forming an ML solution
and then using this quantity to select the priors for our MAP
solution, for imaging.




