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Abstract

Hundreds of materials, such as drugs, explosives,
makeup, food additives, are in the form of powder. Recog-
nizing such powders is important for security checks, crim-
inal identification, drug control, and quality assessment.
However, powder recognition has drawn little attention in
the computer vision community. Powders are hard to distin-
guish: they are amorphous, appear matte, have little color
or texture variation and blend with surfaces they are de-
posited on in complex ways. To address these challenges,
we present the first comprehensive dataset and approach for
powder recognition using multi-spectral imaging. By using
Shortwave Infrared (SWIR) multi-spectral imaging together
with visible light (RGB) and Near Infrared (NIR), powders
can be discriminated with reasonable accuracy. We present
a method to select discriminative spectral bands to signifi-
cantly reduce acquisition time while improving recognition
accuracy. We propose a blending model to synthesize im-
ages of powders of various thickness deposited on a wide
range of surfaces. Incorporating band selection and im-
age synthesis, we conduct fine-grained recognition of 100
powders on complex backgrounds, and achieve 60%∼70%
accuracy on recognition with known powder location, and
over 40% mean IoU without known location.

1. Introduction

In the influential paper “on seeing stuff” [1], Adelson
argues about the importance of recognizing materials that
are ubiquitous around us. The paper explains how hu-
mans visually perceive materials using a combination of
many factors including shape, texture, shading, context,
lighting, configuration and habits. This has since lead to
many computer vision approaches to recognize materials
[3, 10, 17, 32, 39, 41, 44, 45]. Similarly, this work has
inspired methods for fine-grained recognition of “things”
[2, 18, 22, 26, 40, 42] that exhibit subtle appearance varia-
tions, which only field experts could achieve before.
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Figure 1. White powders that are not distinguishable in visi-
ble light (RGB) and Near Infrared (NIR) show significantly
different appearances in Shortwave Infrared (SWIR). The
leftmost sample is a white patch for white balance while the
others are powders. Row 1 (left to right): Cream of Rice,
Baking Soda, Borax Detergent, Ajinomoto, Aspirin; Row 2:
Iodized Salt, Talcum, Stevia, Sodium Alginate, Cane Sugar;
Row 3: Corn Starch, Cream of Tartar, Blackboard Chalk,
Boric Acid, Smelly Foot Powder; Row 4: Fungicide, Cal-
cium Carbonate, Vitamin C, Meringue, Citric Acid.

But there is a large class of materials — powders — that
humans (even experts) cannot visually perceive without fur-
ther testing by other sensory means (taste, smell, touch). We
often wonder: ”Is the dried red smudge ketchup or blood? Is
the powder in this container sugar or salt?” In fact, hundreds
of materials such as drugs, explosives, makeup, food or
other chemicals are in the form of powder. It is important to
detect and recognize such powders for security checks, drug
control, criminal identification, and quality assessment. De-
spite their importance, however, powder recognition has re-
ceived little attention in the computer vision community.

Visual powder recognition is challenging for many rea-
sons. Powders have deceptively simple appearances — they
are amorphous and matte with little texture. Figure 1 shows
20 powders that exhibit little color or texture variation in
the Visible (RGB, 400-700nm) or Near-Infrared (NIR, 700-
1000nm) spectra but are very different chemically (food
ingredients to poisonous cleaning supplies). Unlike mate-
rials like grass and asphalt, powders can be present any-
where (smudges on keyboards, kitchens, bathrooms, out-



doors, etc.) and hence scene context is of little use for ac-
curate recognition. To make matters worse, powders can be
deposited on other surfaces with various thicknesses (and
hence, translucencies), ranging from a smudge to a heap.
Capturing such data is not only time consuming but also
consumes powders and degrades surfaces.

We present the first comprehensive dataset and approach
for powder recognition using multispectral imaging. We
show that a broad range of spectral wavelengths (from vis-
ible RGB to Short-Wave Infrared: 400-1700nm) can dis-
criminate powders with reasonable accuracy. For example,
Figure 1 shows that SWIR (1000-1700nm) can discriminate
powders with little color information in RGB or NIR spec-
tra. While hyperspectral imaging can provide hundreds of
spectral bands, this results in challenges related to acquisi-
tion, storage and computation, especially in time-sensitive
applications. The high dimensionality also hurts the perfor-
mance of machine learning [14] and hence recognition. We
thus present a greedy band selection approach using nearest
neighbor cross validation as the optimization score. This
method significantly reduces acquisition time and improves
recognition accuracy as compared to previous hyperspectral
band selection approaches [6, 30].

Even with fewer spectral bands, data collection for pow-
der recognition is hard because of the aforementioned vari-
ations in the thicknesses and the surfaces on which powders
could be deposited. To overcome this challenge, we present
a blending model to faithfully render powders of various
thicknesses (and translucencies) against known background
materials. The model assumes that thin powder appearance
is a per-channel alpha blending between thick powder (no
background is visible) and background, where � follows the
Beer-Lambert law. This model can be deduced from the
more accurate Kubelka-Munk model [23] via approxima-
tion, but with parameters that are practical to calibrate. The
data rendered using this model is crucial to achieve strong
recognition performance on real data.

Our multi-spectral dataset for powder recognition is cap-
tured using a co-located RGB-NIR-SWIR imaging system.
While the RGB and NIR cameras (RGBN) are used as-is,
the spectral response of the SWIR camera is controlled by
two voltages. The wide-band nature of the SWIR spec-
tral response (Figure 6) is more light efficient while re-
taining the discriminating ability of the traditional narrow-
band hyper-spectral data [5, 43]. The dataset has two parts:
Patches contains images of powders and common materi-
als and Scenes contains images of real scenes with or with-
out powder. For Patches, we imaged 100 thin and thick
powders (food, colorants, skincare, dust, cleaning supplies,
etc.) and 100 common materials (plastics, fabrics, wood,
metal, paper, etc.) under different light sources. Scenes in-
cludes 256 cluttered backgrounds with or without powders
on them. We incorporate band selection and data synthesis

in two recognition tasks: (1) 100-class powder classification
when the location of the powder is known, achieving top-1
accuracy of 60%∼70% and (2) 101-class semantic segmen-
tation (include background class) when the powder location
is unknown, achieving mean IoU of over 40%.

2. Related Work
Powder Detection and Recognition: Terahertz imaging is
used for the detection of powders [38], drugs [19, 20] and
explosives [33]. Nelson et al. [29] uses SWIR hyperspectral
imaging to detect threat materials and to decide whether a
powder is edible. However, none of them studied on a large
dataset with powders on various backgrounds.
Hyperspectral Band Selection: Band selection [6, 7, 12,
15, 27, 30, 37] is a common technique in remote sensing.
MVPCA [6] maximizes variances, which is subject to noise.
A rough set based method [30] assumes two samples can be
separated by a set of bands only if they can be separated by
one of the bands, which ignores the cross-band information.
Blending Model: Alpha Blending [31] is a linear model
assuming all channels share the same transparency, which
is not true for real powders. Physics based models [4, 13,
16, 23, 28, 35] usually include parameters hard to calibrate.
The Kubelka-Munk model [23] models scattering media on
background via a two-flux approach. However, it models
absolute reflectances rather than intensities, requiring pre-
cise instruments for calibration and costing time.

3. RGBN-SWIR Powder Recognition Database
We build the first comprehensive RGBN-SWIR Multi-

spectral Database for powder recognition. We first intro-
duce the acquisition system in Section 3.1. In Section
3.2, we describe the dataset—Patches providing resources
for image based rendering, and Scenes providing cluttered
backgrounds with or without powder. To reduce the acqui-
sition time, we present a band selection method in Section
3.3, and use selected bands to extend the dataset.

3.1. Image Acquisition System

The SWIR camera is a ChemImage DP-CF model [29],
with a liquid crystal tunable filter set installed. The spectral
transmittance (1000-1700nm) of the filter set is controlled
by two voltages (1.5V≤ V0, V1 ≤ 4.5V). We call each spec-
tral setting a band or a channel, corresponding to a broad
band spectrum (Figure 6). It takes 12min to scan the volt-
age space at 0.1V step to obtain a 961-band image. The 961
values of a pixel (or mean patch values) can be visualized
as a 31×31 SWIR signature image on the 2D voltage space.

We co-locate the three cameras (RGB, NIR, SWIR) us-
ing beamsplitters (Figure 2), and register images via ho-
mography transformations. The setup is bulky to mount
vertically, hence a target on a flat surface is imaged through



Figure 2. Image Acquisition System. RGB, NIR, and
SWIR cameras are co-located using beamsplitters. The tar-
get is imaged through a45� mirror.

(a) Thick RGB Patch

(b) Thick NIR Patch (c) Thick SWIR Signature
Figure 3. Hundred powders. Thick RGB patches, NIR
patches and normalized SWIR signatures are shown.

a 45� mirror. A single light source is placed towards the
mirror. We use 4 different light sources for training or vali-
dation (Set A), and 2 others for testing (Set B).

3.2. Patches and Scenes

The dataset includes two parts:Patchesprovides patches
(size 14� 14) to use for image based rendering;Scenespro-
vides scenes (size 280� 160) with or without powder. White
balance is done with a white patch in each scene.

Patches(Table 1) includes 100 powders and 100 com-
mon materials that will be used to synthesize appearance on
complex backgrounds. Powders are chosen from multiple
common groups - food, colorants, skincare, dust, cleaning
supplies, etc. Examples include Potato Starch (food), Cyan
Toner (colorant), BB Powder (skincare), Beach Sand (dust),
Tide Detergent (cleansing), and Urea (other). See supple-
mentary for the full list. The RGBN images and SWIR sig-
natures of the 100 powder patches are shown in Figure 3.
Common materials (surfaces) on which the powders can be
deposited include plastic, fabrics, wood, paper, metal, etc.
All patches are imaged 4 times under different light sources
(Set A). To study thin powder appearances, we also imaged
thin powder samples on a constant background. As shown
in Figure 4 (a), thick powders, thin powders, and a bare

(a) Thick/Thin Powders (b) Common Materials
Figure 4. Patchesexample. Thin powders are put on the
same black background material. Patches are manually
cropped for thick powders, thin powders, bare background,
common materials, and white patch.

(a) Background Image(b) Image with Powder (c) GT Powder Mask
Figure 5. Scenesexample. The ground truth mask is ob-
tained by background subtraction and manual annotation.

Dataset ID Target
Light

Sources
Num

Patches

Patch-thick 100 thick powders Set A 400
Patch-thin 100 thin powders Set A 400
Patch-common 100 common materials Set A 400

Table 1. Patches. 100 thick and thin powders, and 100
common materials are imaged under light sources Set A.

Dataset ID
Light

Sources
Num SWIR

Bands
Num

Scenes
N Powder
Instances

Scene-bg Set A 961 64 0
Scene-val Set A 961 32 200
Scene-test Set B 961 32 200
Scene-sl-train Set A 34 64 400
Scene-sl-test Set B 34 64 400

Table 2. Scenes. Each powder appears 12 times.Scene-
sl-train andScene-sl-testinclude bands selected by NNCV,
Grid Sampling, MVPCA [6], and Rough Set [30].

background patch are captured in the same �eld of view.
Scenes(Table 2) includes cluttered backgrounds with or

without powder. Ground truth powder masks are obtained
via background subtraction and manual editing (Figure 5).
Each powder inPatchesappears 12 times inScenes. In Ta-
ble 2, scenes captured with light sources Set A are for train-
ing or validation, while the others are for testing.Scene-
bg only has background images, while the others have both
backgrounds and images with powder.Scene-sl-trainand
Scene-sl-testare larger datasets of scenes with powder that
include only selected bands (explained in Section 3.3).

3.3. Nearest Neighbor Based Band Selection

Capturing all 961 bands costs 12min, forcing us to se-
lect a few bands for capturing a larger variation of pow-
ders/backgrounds. Band selection can be formulated as se-


