Ginseng: Keeping Secrets in Registers
When You Distrust the Operating System

Min Hong Yun and Lin Zhong
Rice University
{mhyun, Izhong} @rice.edu

Abstract—Many mobile and embedded apps possess sensitive
data, or secrets. Trusting the operating system (OS), they often
keep their secrets in the memory. Recent incidents have shown
that the memory is not necessarily secure because the OS can
be compromised due to inevitable vulnerabilities resulting from
its sheer size and complexity. Existing solutions protect sensitive
data against an untrusted OS by running app logic in the Secure
world, a Trusted Execution Environment (TEE) supported by
the ARM TrustZone technology. Because app logic increases the
attack surface of their TEE, these solutions do not work for
third-party apps.

This work aims to support third-party apps without growing
the attack surface, significant development effort, or performance
overhead. Our solution, called Ginseng, protects sensitive data
by allocating them to registers at compile time and encrypting
them at runtime before they enter the memory, due to function
calls, exceptions or lack of physical registers. Ginseng does not
run any app logic in the TEE and only requires minor markups
to support existing apps. We report a prototype implementation
based on LLVM, ARM Trusted Firmware (ATF), and the HiKey
board. We evaluate it with both microbenchmarks and real-world
secret-holding apps.

Our evaluation shows Ginseng efficiently protects sensitive
data with low engineering effort. For example, a Ginseng-
enabled web server, Nginx, protects the TLS master key with
no measurable overhead. We find Ginseng’s overhead is pro-
portional to how often sensitive data in registers have to be
encrypted and decrypted, i.e., spilling and restoring sensitive data
on a function call or under high register pressure. As a result,
Ginseng is most suited to protecting small sensitive data, like a
password or social security number.

I. INTRODUCTION

Many mobile and IoT apps nowadays contain sensitive
data, or secrets, such as passwords, learned models, and health
information. Such secrets are often protected by encryption in
the storage. However, to use a secret, an app must decrypt it
and usually store it as cleartext in memory. In doing so, the app
assumes that the operating system (OS) is trustworthy. OSes
are complex software and have a large attack surface. Even
techniques such as secure boot still leave the OS vulnerable to
attacks after the boot, e.g., [[11]], [63[]. Increasingly abundant
evidence [[10], [37], [42], [67], [74] suggests that prudent apps
should not trust the OS with their secrets.

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA

ISBN 1-891562-55-X

https://dx.doi.org/10.14722/ndss.2019.23327
www.ndss-symposium.org

There has been a growing interest in protecting app secrets
against an untrusted OS, as summarized in Many
reported solutions do not work for mobile and embedded
systems that are based on the ARM architecture: they require
either Intel SGX extension, e.g. Haven [8], SCONE [3]] and
Ryoan [32], or hypercall from userspace that is not available in
ARM, e.g., Flicker [45]], TrustVisor [44], and InkTag [31]]. Oth-
ers leverage ARM’s TrustZone technology, which provides a
hardware-supported trust execution environment (TEE) called
the Secure world. Most of them run an entire or sensitive
part of an app in the Secure world, e.g., [29], [40], [43],
[60]. By doing so, they proportionally expand the attack
surface of the TEE and as a result, do not support third-
party apps. CaSE [76], a rare exception, only requires generic
logic in the Secure world. Unfortunately CaSE requires a cache
lockdown feature that is no longer available on the latest ARM
architecture, i.e., AArch64. Moreover, CaSE keeps the entire
app in the cache, which limits the app size to tens of KB; it
also forbids concurrent OS activities, which incurs significant
runtime overhead.

In this work, we present a new approach toward protecting
app secrets against an untrusted OS, called Ginseng. Ginseng
supports third-party apps without growing the attack surface,
significant development effort, or performance overhead. It
follows two principles to overcome the limitations of the prior
work. First, app logic should not enter the TEE. Otherwise,
the TEE’s attack surface grows proportionally as the number
of apps increases: app logic with a vulnerability opens the door
to adversaries to compromise the TEE. Second, only sensitive
data need to be protected. Protecting insensitive data incurs
unnecessary overhead, which can be prohibitively high.

Following the two principles, Ginseng protects only sensi-
tive data. The key idea is to keep them in registers only when
they are being used and to save them in an encrypted memory
region, called secure stack, when switching context. With
the compiler’s help, Ginseng infers which data are sensitive
based on developer-provided hints and keeps them in registers.
Whenever these registers have to be saved to the stack, e.g.,
due to function call or exception, Ginseng uses the secure
stack to hide the sensitive data. We note some prior works
also place secrets in registers in order to defend against cold-
boot attacks [27]], [28]], [46], [47], [65]. These works, however,
all trust the OS. Ginseng’s runtime protection relies on a
small, generic logic in the TEE, called GService. GService
implements the behaviors of the secure stack, supports code
integrity of functions processing sensitive data, and provides
control-flow integrity (CFI) when sensitive data are in use.
We enhance the security/safety of GService with a three-

pronged approach. First, we implement most of it in Rust,
a safe language that guarantees software fault isolation by
preventing unauthorized memory access and using a single
ownership model [7]. Second, we minimize the unsafe part of
GService to a small amount of assembly code, 190 lines in our
implementation, which is amenable to formal verification by
existing tools, e.g., Vale [9]. Finally, GService uses a statically-
allocated memory region as its private heap, which further
prevents it from affecting the existing TEE.

We report a Ginseng prototype using the HiKey board with
ARM TrustZone. Combining Ginseng with known techniques
that secure user input [41], [[72]], our prototype is the first
to secure sensitive app data for its entire lifetime against an
untrusted OS on ARM-based systems, without app logic in the
TEE. The prototype has been made open-source [54].

Using both micro and macro benchmarks, we evaluate how
much overhead Ginseng imposes and how app knowledge can
help alleviate it. We build a two-factor authenticator processing
a user’s secret key to log in popular web sites such as Amazon
and Facebook. We extend OpenSSL used by wpa_supplicant
and the Nginx web server. Linux systems connecting to a Wi-
Fi network use wpa_supplicant which saves Wi-Fi passwords
in memory. Many IoT devices provide TLS-enabled web user
interfaces using Nginx [35], [48]], [71]], which saves the TLS
master key in memory. We also use Ginseng to protect a
decision-tree-based classifier, which is popular on mobile and
embedded apps and contains valuable intellectual property
from the app vendor.

The evaluation shows Ginseng imposes a low overhead
when computation with sensitive data does not contribute
significantly to app execution time, which is usually true for
I/0 extensive apps. For example, Ginseng protects the TLS
master key of Nginx with no measurable overhead for HTTPS
transactions. Otherwise, Ginseng may impose a high overhead.
For example, four functions processing the Wi-Fi password
in wpa_supplicant dominate the app’s execution time; this
results in an overhead of 6 B cycles for protecting the password
due to repeated function calls with a naive implementation.
Nevertheless, 75% of this overhead can be eliminated by
aggregating the functions and inlining callees, using app-
specific knowledge, as we discuss in

While we target Ginseng for ARM-based systems, Ginseng
can be also realized in x86 systems as the latter also meet
Ginseng’s architectural requirements (see [[II-AT]). Importantly,
by keeping secrets in registers, Ginseng naturally protects
them from cold-boot attacks, which extract and analyze system
memory by exploiting the remanence effect of DRAM [30],
[47]. Indeed, some existing defenses against cold-boot attacks
also place secrets in registers, e.g, [27], [28]], [46], [47], [65].
All of them trust the OS and even require OS collaboration
at runtime. In contrast, Ginseng does not trust the OS and as
a result, a significant part of Ginseng’s innovation goes into
preventing sensitive register content from entering memory
without OS collaboration.

Although our prototype supports apps written C or C++,
Ginseng can also protect sensitive data in managed code such
as Dalvik bytecode, which constitutes the majority of Android
apps. The challenge to applying Ginseng to managed code is
that the managed runtime, not the compiler, determines the

TABLE 1. COMPARISON WITH RELATED WORK DISTRUSTING THE OS

. HW ARM Attack Perf.
Solutions
Req. Support Surface Overhead
Ginseng TrustZone Fixed Low
or x86
v
TLR [60] Mid-
TrustShadow [29 Prop-¥ High
rustShadow [29] TrustZone N i lllg
CaSE [76] © Fixed igh (no
AArch64 concurrency)
Overshadow [14] Hypercall
Flicker [45], InkTag [31] from
TrustVisor [[44] userspace X * *
H
aven [8], SCONE [3] Intel SGX
Eleos [50], Ryoan [32]

T“Prop.” means that the attack surface grows proportionally with the number of apps, a
result from having app logic in the TEE.

registers used for sensitive data. This challenge, however, can
be sidestepped by using ahead-of-time (AOT) compilation and
pre-compiling sensitive functions to binary on a developer’s
machine.

In summary, we make the following contributions:

e We report Ginseng, the first system design that protects
third-party app secrets on ARM-based systems. Ginseng
does not install any app logic in the TEE, requires only
minor markups in app source code, and selectively protects
only sensitive data for efficiency.

e We report a Ginseng prototype based on LLVM and an
AArch64 board with ARM TrustZone, protecting sensitive
data for its entire lifetime against the OS, starting from user
input.

e We report the evaluation of Ginseng’s performance and
engineering overhead using microbenchmarks and four real-
world apps with various secrets. It shows that Ginseng im-
poses overhead only when sensitive data is being processed
and as a result, an app using sensitive data only sparingly,
like Nginx, suffers no measurable overhead.

II. THREAT MODEL

We seek to protect the confidentiality and integrity of
an application’s sensitive data against an adversary who can
access privileged software, i.e., OS. We do so without any app
logic in the TEE. Below, we elaborate our assumptions and
rationales.

Trusted Computing Base (TCB): Like many prior
works [4], [6]], [25], our TCB includes the hardware, boot-
loader for a higher privilege mode than the OS, and the
software running in the higher privilege mode. At the hardware
level, we trust the processor along with its security extensions,
e.g., ARM TrustZone. At the software level, we trust the
bootloader for the higher privilege mode and software in the
mode. We do not trust the bootloader for the OS, the OS, and
any software running in the OS. Following the TCB definition
of Lampson et al [38]], we do not consider apps relying on the
TCB as part of the TCB because their misbehavior does not
affect the TCB.

We do not trust the OS, but we assume the OS, e.g., Linux,
is integral at booting time, thanks to the chain of trust, or secure

boot [1]l, [2]], which verifies the integrity of the OS during
boot. Nevertheless, secure boot only verifies that the kernel
image is not modified; it does not fix vulnerabilities [[11], [63].
Moreover, our threat model allows kernel modules to be loaded
after booting, which are not subject to boot-time verification.

Threat Model: After boot, an attacker can compromise
the OS and gain access to sensitive data of an unsuspicious
app. The attacker can completely control the kernel and install
any software. Then, the attacker can access memory content
of an app by mapping the latter’s physical page frames to the
kernel’s address space; or the attacker can simply turn off the
MMU and access the memory content with physical addresses.
Importantly, we assume a user or attacker can load a loadable
kernel module (LKM). We do not address attacks on OS
availability, side-channel attacks, and sophisticated physical
attacks and consider them as out of scope.

No App Logic in TEE Utilizing the TEE as an app’s
execution environment helps the app conceal its memory
content from the untrusted OS. However, doing so increases the
TEE’s attack surface and may result in information leakage of
the entire trusted environment as demonstrated in Secure world
attacks [36], [55]], [63]]. These attacks exploit the OS vulner-
abilities to use privileged instructions; then, they compromise
an app with vulnerabilities in the TEE and then the secure
OS. That is, an app with vulnerabilities in the TEE becomes
the gate for the attackers to enter the trusted environment. To
prevent these types of attacks, both trusted apps and the secure
OS must have no vulnerability, which is unrealistic as shown
by continuous CVEs since 2013, e.g., [16]-[23]].

To reduce app logic in TEE, many prior research efforts
partition an app into secure and non-secure parts and only push
the secure parts into the TEE [40], [60], [[77]. This approach is
hardly applicable to third-party apps because it still increases
the TEE’s attack surface and there can be many third-party
apps. Thus, we follow the principle of the least privilege [58]].
App secrets must be protected by the mechanisms that the TEE
provides, not by running the apps in the TEE with excessive
privilege. Ginseng is an example of such mechanisms.

III. GINSENG DESIGN

Ginseng’s goal is to protect the confidentiality and integrity
of sensitive app data in an untrusted OS. Its key idea is for an
app to retain sensitive data only in registers. When the data
have to be saved to the stack, e.g., context switching, Ginseng
saves them in an encrypted memory region, called secure stack.
The hashes of the encrypted data in the secure stack are kept
in the TEE so that the OS shall not break confidentiality and
integrity of the data. In doing so, Ginseng limits sensitive
data to local variables or function parameters and employs
both compile-time and runtime mechanisms to keep them from

leaving registers unencrypted. illustrates Ginseng’s
architecture.

This section provides an overview of Ginseng’s design and
elaborates its programming model and compile-time support
for static protection. We will elaborate the runtime protection

in V1

Figure 1. Ginseng Overview: a function with developer-marked sensitive
variables directly communicates with GService through secure APIs. The
service running with a higher privilege mode than the OS protects code
integrity of the function, and confidentiality and integrity of sensitive data.
Ginseng keeps sensitive variables in registers and uses the secure stack
to protect them when switching context with the help from the Ginseng
compiler. In ARM processors, the higher privilege mode corresponds to the
Secure world supported by the TrustZone technology. Both the user and kernel
modes are in the Normal world. The gray boxes are our contributions.

A. Design Overview

The basic unit of protection in Ginseng is a function.
Ginseng provides a keyword sensitive for a developer
to declare a local variable, parameter or return value of a
function as sensitive, as shown in Once declared,
we say that this variable and the corresponding function are
sensitive. To ensure the confidentiality and integrity of sensitive
data, Ginseng must ensure the code integrity of the sensitive
functions via a collaboration of static and runtime protections.
In addition to the code integrity, the collaboration also provides
control-flow integrity (CFI) when sensitive data are in registers.

Ginseng implements static protection in its compiler. First,
the register allocator only uses registers for the designated
sensitive variables, never spilling them into the memory. This,
however, is not enough because registers, as the function’s
execution context, can be saved to the memory, i.e., stack,
when execution context changes, due to either function calls or
context switching. Because it is the responsibility of a compiler
to generate context-saving code for function calls, the Ginseng
compiler saves and restores the registers with sensitive data to
and from the secure stack.

Ginseng supports runtime protection with a small, passive
piece of software with a higher privilege, i.e., running in
the Secure world in ARM. The software, called GService,
serves requests from a sensitive function. When registers with
sensitive data must be saved/restored due to execution con-
text change, GService encrypts/decrypts them before saving
into/restoring from the memory, providing the abstraction of
a secure stack. For the code integrity of a sensitive function,
GService prevents the OS from mapping the function’s code
pages to the kernel address space. The service also ensures
CFI by considering a function pointer as a sensitive variable.

Ginseng provides a small set of APIs for an app and GSer-
vice to communicate with each other bypassing the untrusted
OS.

1) Architectural requirements: Ginseng has three architec-
tural requirements:

e a higher privilege mode than that of the untrusted OS to
run GService;

e a direct call from an app to the higher privilege mode to
bypass the OS;

e a way to trap writes to virtual memory control registers
into the higher privilege mode.

We note that both x86 and ARM architectures meet the
requirements. The hypervisor mode of Intel and AMD pro-
cessors is suitable to run GService. A user process can use
the hypervisor call instruction to directly communicate with
GService in the hypervisor mode. It is also possible to trap
modifications on virtual memory control registers using the
virtual machine control fields in VMCS (or VMCB in AMD).

For clarity, we will use ARM 64-bit (AArch64) terminol-
ogy to expose the design of Ginseng. We will use Normal
world to refer to the rich OS and software running on top of
it. When necessary, we will subdivide it into ELO (user mode),
EL1 (kernel mode), and EL2 (hypervisor mode). We will use
Secure world to refer to the higher privilege mode, EL3. We
will use AArch64 ISA and follow its calling convention. We
will use exception to refer to asynchronous, i.e., interrupts,
and synchronous exceptions caused by instructions, e.g., a
permission fault by storing a register to read-only memory.

B. Programming model

Ginseng’s unit of protection is a function. It protects
local variables, parameters, and the return value of a function
marked by developers as sensitive. We next elaborate this
design choice and explain how it affects the programming
model.

To use Ginseng, a programmer will mark a variable of
any type as sensitive as shown in As protection
comes with overhead, the smaller and the fewer sensitive
variables, the more efficiently the program will run. Therefore,
the incentive is clear and strong for the programmer to only
mark the absolutely necessary variables. When compiling
the program, the programmer indicates how many registers
can be used for sensitive variables and the compiler will
complain when the marked variables could not fit, which will
be elaborated further in [II=Cl

The sensitivity of a variable is contagious both within
and between functions. Ginseng’s compiler performs static
taint analysis to identify all variables that may carry the
sensitivity. Because static taint analysis does not have the
semantic information of all sensitivity propagations, it does
so conservatively. For example, the return value of a local
function taking a sensitive variable as a parameter will be
considered sensitive. This may lead to an excessive number of
sensitive variables, hurting performance. Therefore, we allow
the app developer, who has semantic knowledge about the
local function, to stop the sensitivity propagation by marking
a variable as insensitive.

We limit sensitive data to local variables because protecting
global variables is expensive and often unnecessary. To protect
a global variable, the data page containing the variable needs to
be encrypted and decrypted when the CPU enters and exits the

1 void hmac_shal (sensitive long key_top,

2 sensitive long key_bottom,

3 const uint8_t =xdata,

4 uint8_t *result) {

5 sensitive long tmp_key_top, tmp_key_bottom;
6 /* all other variables are insensitive x/
7
8
9
10

/% HMAC_SHAI implementation =/

11 int genCode(sensitive long key_top,

12 sensitive long key_bottom) {
13 /% all other variables are insensitive x/
14

15 /% use HAMC_SHAI to compute 20-byte hash =/
16 hmac_shal (key_top, key_bottom, // sensitive data

17 challenge , // current time/30gcc
18 resultFull); // (out) full hash
19

20 /% truncate 20-byte hash to 4-byte x/

21 result = truncate(resultFull);

22

23 printf ("OTP: .%06d\n”, result);

24 return result;

25 }

26

27 void run() {
28 sensitive long key_top, key_bottom;

30 /* read a secret key from GService or a user x/
31 s_read (TKN_KEY1_TOP, TKN_KEYI_BOTTOM, key_top);
32 s_read (TKN_KEY2_TOP, TKN_KEY2 BOTTOM, key_bottom);

34 genCode (key_top , key_bottom);

Figure 2. Simplified Two-factor Authenticator: a developer uses a keyword
sensitive to mark sensitive variables and parameters.

kernel mode (EL1). For example, trusted software such as the
secure monitor or trusted hypervisor [31] has to intercept all
exceptions so that it can encrypt the data page before entering
the kernel mode. When returning to the app, the trusted
software has to decrypt the page, too. Because the kernel
running on other cores can access the decrypted data page,
only a single core could be online. Furthermore, TLB flushes
and cache pollution further degrade the performance [50], [66].
On the other hand, using global variables for sensitive data is
not absolutely necessary because a program can load sensitive
data from their source on demand. For example, a program
can load a secret key from the Secure world or a file system
only when the key is needed. Therefore, Ginseng protects local
variables only.

Example: |Figure 2| a snippet of a two-factor authenticator,
reflects Ginseng’s design decision. First, only local variables
with sensitive data are protected. In genCode () (line [TT}{23)),
for example, the current time divided by 30sec, challenge,
and onetime password, result and resultFull, are not
protected. The function declares only the two parameters as
sensitive. We intentionally regard the onetime password as
insensitive because this is refreshed at every 30 sec and not as
important as the 80-bit secret key. Second, not all functions are
sensitive. The bodies of t runcate () and printf () called in
line 21] and [23] are not protected because they do not contain
a sensitive variable or parameter.

C. Static Protection

Ginseng extends the compiler to provide static protection
of sensitive variables. The extension includes two parts. First,
the compiler identifies all sensitive variables and keeps them

I

Lose sensitivity A

Reuse for another sensitive variable

- Sensitive I:l Insensitive

Figure 3. Dynamic Register Sensitivity Example: the sensitivity of a register
follows a variable’s liveness. The dynamic sensitivity enables the compiler to
allocate a register to multiple sensitive or insensitive variables. GService does
not know the true sensitivities of registers at runtime; hence, the service saves
all registers that are potentially sensitive on an exception.

only in registers. Once a register holds the value of a sensitive
variable, it becomes sensitive. Second, on a function call,
the compiler emits instructions sending a request to GService
which in turn encrypts sensitive data and saves them in the
secure stack. Likewise, after the function call, the compiler
emits similar instructions for restoring sensitive data from the
secure stack to sensitive registers.

1) Allocating registers for sensitive variables: The register
allocator of a compiler decides where a variable’s value is
stored: registers, stack or heap; Ginseng’s compiler must keep
sensitive variables in a set of predefined registers. With further
help from the runtime protection ([V)), Ginseng keeps sensitive
variables away from memory that the untrusted OS can access.

The optimization goal of Ginseng’s register allocation is
to use as few sensitive registers as possible. This is because
sensitive registers require special care by both the compiler
and runtime so that they do not enter the memory and as a
result, incur performance overhead.

To achieve this goal, Ginseng’s compiler employs two
complementary ideas. First, the sensitivity of a register should
be dynamic, depending on whether it holds a [live sensitive
variable. At the variable’s last use, the register loses its sensi-
tivity and becomes free at which point the compiler can reuse
it. [Figure 3| shows an example. Register x15 is allocated to a
sensitive variable and becomes sensitive at the beginning of a
function; as it loses sensitivity in the middle, it is allocated to
an insensitive variable and becomes insensitive. The dynamic
sensitivity allows the compiler to assign a register to multiple
(sensitive) variables when their lifetimes do not overlap, e.g.,
x12 in the figure.

The second idea is to allocate sensitive registers before
others, a two-phase method. The compiler prioritizes sensitive
registers to exclude them from the spillable register list and
avoid unnecessary spills. If it allocates insensitive ones first,
the compiler may not find a free register for a sensitive
variable and need to introduce extra spills. In the first pass,
the allocator allocates registers for sensitive variables and
builds a sensitivity table that records the sensitivity ranges
of registers. The table tells which registers are sensitive at
a certain instruction. The second pass uses this information
not to allocate them for insensitive variables. The call site
protection (III-C2) also uses this information to determine
which registers should be saved to the secure stack at a call

// x15 and x14 have sensitive data

1
2
3 // 1Ist argument (id_top)

4 mov x0, #0x4e26

5 movk x0, #0x577c, 1sl #16
6 movk x0, #0x2f99, 1sl #32
7 movk x0, #0x41le4, 1sl #48
8

9 // 2nd argument (id_btm)
10 mov x1, #0x7ccO
11 movk x1, #0xcf91, Isl #16

12 movk x1, #0x2362, 1sl #32
13 movk x1, #0x81e2, Isl #48
14

15 // 3rd argument (reg_vec):

16 // sensitive data hide/move encoding
17 mov x2, #0x2021000000000000

18

19 // 4th argument (dyn_dst):

20 mov x3, xzr

21 bl 401eed4 <s_writeMoveV>

22

23 // prepare the last two arguments of hmac_shal

24 // s_writeMoveV prepared the first two (x0 and xI).
25 sub X2, x29, #24

26 add x3, sp, #44

27 bl 400f20 <hmac_shal>

Figure 4. Disassembled Call Site Protection Example: to protect sensitive
data in registers x15 and x14, the Ginseng compiler assigns a call site
identifier, encodes sensitive data hide/move decision, and sends a request to
GService through s_writeMoveV () before calling hmac_shal ().

site. In the second pass, the allocator allocates registers for
insensitive variables by referencing the table and excluding
sensitive registers.

2) Protecting sensitive registers at a call site: In a function
call, the caller and callee collaboratively save the caller’s
context in the stack following the calling convention. It is a
compiler’s responsibility to insert the code that saves/restores
the context. When a function call is made within a sensitive
function, Ginseng’s compiler must save/restore sensitive reg-
isters only using the secure stack. That is, it emits instructions
sending a request to GService through the secure APIs to be
described in Protecting sensitive registers at a call site
is analogous to protecting them on an exception (IV-CT). Both
have to save and restore the content of sensitive registers only
using the secure stack. The difference is that the timing of an
exception is unknown at compile time; thus, GService must
intercept exceptions at runtime to protect sensitive registers.

The request sent to GService at a call site contains the
call site identifier and information about sensitive registers
and sensitive parameters of the callee. The identifier helps
GService match the data saved in the secure stack with the
corresponding call site. It is uniquely assigned to each call
site by the compiler, a la AppInsight [53]]. The compiler refers
to the sensitivity table and inserts code to save all
sensitive registers to the secure stack. It also decides which
sensitive registers should be moved to registers for parameter
passing according to the calling convention, i.e., x0-x7 in
AArch64.

One may wonder if a compromised Normal world entity
could exploit the call site identifier to retrieve and modify
sensitive data from the secure stack. GService addresses this
by ensuring the code integrity of sensitive functions and that
the request comes from a sensitive function, by checking the
return address of the request saved in the exception link register
(or the stack in x86). We will elaborate this in

TABLE II.

GINSENG SECURE API

API

Description

exposed to the Ginseng compiler
s_writeMoveV (id_top, id_btm, reg_vec, dyn_dst)

J.sreadv . (id_top, id btm, reg vec)
s_entry (id_top, id_btm)
s_exit (id_top, id_btm)

hides and restores sensitive data at a call site. The compiler assigns a unique identifier to each
call site and encodes the hide/move information in the third parameter. dyn_dst is used for
CFI and indicates whether the next branch instruction is for a function pointer.

s_entry () checks code integrity. s_exit () sanitizes sensitive data from registers. The
compiler assigns a unique identifier to each sensitive function.

exposed to developers
s_read (id_top, id_btm, reg_idx)
s_write (id_top, id_btm, reg_idx)

read and write a datum from and to GService. A 128-bit unique identifier (1d_top and
id_btm) specifies the datum to be read or written. The third parameter reg_idx decided
by the Ginseng compiler specifies the source or target register.

Example: To call printf () with no sensitive parameter
(line 23] of [Figure 2)), the compiler decides to hide all sensitive
registers, x15 and x14 holding key_top and key_bottom.
To call hmac_shal () with two sensitive parameters (line @]),
the compiler decides to move x15 and x14 to x0 and x1,
respectively. Once the compiler makes the register hide/move
decision, it encodes the decision into the request to be sent to
GService. is an example where the Ginseng compiler
inserts a call to GService (s_writeMoveV ()) and decides its
arguments before calling hmac_shal (). In line @}{I3] the com-
piler inserts mov [k] instructions for the call site identifier. In
line the encoded information, 0x2021.0000.0000_0000,
tells GService to move x15 to x0 and x14 to x1.

IV. RUNTIME PROTECTION

The static protection by the Ginseng compiler is necessary
but not sufficient to protect sensitive variables in the Normal
world. A compromised OS may modify a sensitive function
to dump sensitive registers to memory, e.g., via code injection
attacks. It can also access the stack when sensitive registers
are saved to the stack as part of the execution context upon an
exception such as a page fault or interrupt. When a sensitive
function passes sensitive data to a callee, the OS may redirect
the branching to a compromised function by compromising the
control flow.

We now describe Ginseng’s runtime protection against such
accesses. The runtime protection heavily relies on GService,
a passive, app-independent piece of software in the Secure
world. GService ensures the code integrity, data confidentiality
and control-flow integrity (CFI). It does so only for sensitive
functions to minimize overhead. It also modifies the kernel
at three points, when booting, when modifying the kernel
page table, and when handling an exception. Since we do
not trust the OS, the kernel may overwrite the modifications.
However, when any of these modifications is disabled, the
kernel will infinitely trigger data aborts trying to modify read-
only memory, thus ensuring sensitive data are always safe.

A. Ginseng internals

GService does not have any app logic. Instead, it tracks
the execution of each sensitive function and provides a secure
stack abstraction for each so that content of sensitive registers
is encrypted before entering the memory. It exports a set of
APIs for the Ginseng compiler (and developer) to insert into
the app to track the execution of sensitive functions and to use
their secure stacks properly.

Function Control Block (fCB): GService maintains a
per-function data structure, called fCB, in the Secure world,

to trace a sensitive function’s execution. When accessing the
secure stack, the service uses the trace to check a sensitive
function’s integrity and what registers can be sensitive on an
exception (IV-C). GService allocates an fCB instance from
a slab allocator when a sensitive function is first executed
(IV-B). It adopts the least recently used (LRU) replacement
policy when the allocator runs low on memory. The instance
contains the information on physical memory address, code
measurement, and a list of sensitive registers for the function.
To trace execution of a sensitive function, the compiler-inserted
code invokes GService at every entry point to a sensitive
function, i.e., beginning of the function and returning from
a callee.

Secure Stack: GService provides a secure stack abstraction
for a sensitive function to save sensitive registers upon context
switch such as a function call and exception. The secure stack
is actually in the Normal world memory but its content is
encrypted by GService. GService exposes two APIs for the
compiler to encrypt/push and pop/decrypt data to and from
the secure stack, respectively.

Secure APIs: The two APIs mentioned above to operate on
the secure stack must bypass the OS. In the ARM architecture,
Ginseng utilizes security violation to bypass the OS. A security
violation occurs when a Normal world program accesses the
Secure world memory. The processor can handle the violation
in three different ways: ignoring the violation, raising an ex-
ternal abort (EA) in the Normal world, or raising an EA in the
Secure world (EL3). We configure the system to raise an EA in
the Secure world (EL3) by setting the external abort bit of the
secure configuration register (SCR_EL3.EA). Thus, whenever
an app attempts to access the Secure world memory, GService
in the Secure world directly catches it and banishes the OS
(in the Normal world) from the communication. GService
allocates a unique Secure world memory address for each
secure APL

[Table II] summarizes the three pairs of secure APIs sup-
ported by Ginseng. They are implemented as a library that
will be linked with the app at compile time. The first pair
are used by the compiler for accessing the secure stack. The
second pair are used by the compiler to check the code
integrity of a sensitive function at its entry point and to sanitize
the function’s sensitive data from registers at its exit point,
respectively. The last pair are used by app developers to read
and write sensitive data from and to the Secure world. We
note that the compiler cannot use call-by-value scheme and
pass the address of a sensitive variable because the variable is
essentially a register without an address. Instead, the Ginseng
compiler finds out the index of a sensitive register from the
sensitivity table and passes the index. For example,

when the compiler works on run () in[Figure 2| it knows that
x15 and x14 are used for key_top and key_bottom. Thus,
it passes 15 and 14 as the third argument of s_read() in

line BTH321

B. Code integrity of a sensitive function

Without code integrity, the OS can modify a sensitive
function to access its sensitive data. Ginseng preserves code
integrity by hiding the code pages of sensitive functions from
the kernel with two complementary techniques.

First, we deprive the kernel of its capability of modifying
its page table. At boot time, we make the kernel page table
read-only. We modify the kernel so that when it needs to
modify its page table, the kernel sends a request to GService
via a higher privilege call, secure monitor call in ARM or
hypervisor call in x86. For example, we modify set_pte ()
to send a request for setting the attributes of a page table
entry. When GService receives the request, it changes the page
table only when the modification would not result in mapping
the sensitive function’s code pages. This technique, assuming
secure boot [1f], [2], has been used in prior work [4]], [6], [25].
It treats the kernel and app page tables in the same way so
that it can monitor all physical-to-virtual mappings and avoid
double mapping [4] to a sensitive function. We note that secure
boot does not reduce the attack surface of the OS; nor does it
deal with kernel modules loaded after boot, which is allowed
by Ginseng’s threat model.

We also forbid the kernel from overwriting its page table
base register so that it cannot swap the table with a com-
promised one that the kernel can modify. To do so, we trap
writes to the register to GService. On the ARM architecture,
we first trap a write to the hypervisor mode (EL2) and then
immediately forward the control to GService in EL3. In a
way, EL2 functions as a relay to EL3, even when there is no
hypervisor. Our benchmark shows the overhead for this trap is
not only small (1.8 K cycles on ARM), but also occurs only
once per booting.

Ginseng’s approach to prevent the page table swap is
different from prior work because of its uniquely powerful
threat model, with the least restriction on attackers to the best
of our knowledge. Prior work [4]], [6]], [25] statically removes
the instruction modifying the kernel page table base register
from the kernel image; and disables support for loadable
kernel modules or does runtime verification on loadable kernel
modules. However, with Ginseng’s threat model, these are not
enough. In our threat model, a user-installed root-privileged
app can load a kernel module with instructions modifying the
base register for kernel page table. Thus, Ginseng traps the
instructions at runtime, instead of removing them statically.

Second, at a sensitive function’s entry point, GService
hides sensitive function code pages from the kernel and checks
code integrity, invoked by s_entry () inserted by the Ginseng
compiler. GService first walks the kernel page table to ensure
no mapping to the function’s code pages. During the page
table walk, other page table modification requests from the
kernel are delayed to avoid TOCTOU attacks. Then, GService
hashes the function code and compares it with one that the
compiler supplies and signs. Only after both checks pass,
GService allocates and initializes an fCB instance for the

. App
% g Exception Sensitive Data and Function Resume
\ Ginseng Library s_readvV () =
<}
(\ f) E
Rich E
T3 Operating System < 3 S
g3 .
Dynamic Trapping ~ Exception Handler
. J
T\ SR i SRR
2. Ginseng Service » e
£3 * Save context * Restore context g
% = L * Return to s_readv () * Resume) g
=

Figure 5. Exception Routing: GService intercepts all exceptions when
sensitive data in registers. The service uses the secure stack to hide potentially
sensitive registers. After the OS handles an exception, the service restores the
data and resumes the function.

function. We note that the page table walk, code hashing, and
fCB initialization only happen when a sensitive function is
invoked for the first time. Therefore, the overhead occurs only
once for each function.

C. Data confidentiality

Statically allocating sensitive data to registers is not enough
for data confidentiality. In the event of an exception or a
function call, sensitive registers must be saved to the memory
as a part of execution context. Ginseng’s secure stack provides
storage for sensitive registers, encrypted in the Normal world
memory.

1) Exceptions within a sensitive function: When a CPU
core is executing a sensitive function, an exception may transit
the core into the kernel mode and save sensitive registers to
the memory. GService intercepts all exceptions using dynamic
trapping as shown in @ in Before handing exception
handling to the OS, GService must save the sensitive registers
to the secure stack (@). Once the exception is handled by the
0OS, it must restore these registers and resume the interrupted

function (€-@). To achieve the above, GService must do three
things.

First, when an exception occurs, GService must intervene
before the OS handles it (€)). Ginseng achieves this with a
technique called dynamic trapping. In Ginseng, sensitive data
can enter registers only via two secure APIs: s_readv() or
s_read (). When either one of them is invoked, GService
inserts the higher privilege call to the beginning of all excep-
tion vectors so an exception will immediately invoke GService.
Dynamic trapping is a runtime modification on the kernel code
in the memory but requires a source code change to reserve
room for the higher privilege call. We insert the NOP instruction
at the beginning of the exception vector source code in order to
reserve the room. When the compiler or a developer uses the
secure API to load sensitive data, GService replaces it with the
Secure Monitor Call instruction, i.e., SMC. The replacement is
possible because all instructions have the same length, 32 bits,
in AArch64. In the x86 architecture, due to the variable length
of instructions, one can reserve the room for the hypervisor
call by inserting a three-byte NOP instruction [34]], NOP DWORD
ptr [RAX], into the vectors. GService avoids unnecessary
trapping by removing the replacement when sensitive data

// x15 and x13 have sensitive data
// x14 is a function pointer

/% omitted: preparing the first two arguments x/

// 3rd argument (reg_vec):

// sensitive data hide/move encoding
mov x2, #0x210000000000

movk x2, #0x2030, Isl #48

O 001N W W —

11 // 4th argument (dyn_dst):
12 orr x3, xzr, #0x1
13 bl 401leed <s_writeMoveV>

15 // branching to a function pointer
16 blr x14

Figure 6. Disassembled CFI Example: the compiler makes the callee’s address
in x14 sensitive and sets x3 to indicate that the next branch instruction for
a function pointer. GService checks the callee’s integrity when servicing
s_writeMoveV ().

leave registers, i.e., when s_exit () or s_readWriteV () is
invoked.

Second, GService must save sensitive registers to the secure
stack and then return to the OS’ exception handler (@).
However, at runtime, GService only knows which registers
are potentially sensitive based on the function’s fCB. This is
because the service does not have the sensitivity table
used at compile time. Thus, the service saves all of potentially
sensitive registers in the secure stack.

Finally, once the OS serves the exception, the control must
be handed back to the app after restoring the sensitive data
from the secure stack (€-@). For this, we change the return
address twice to redirect the control flow. At @), GService
saves the return address and replaces it with s_readv()’s
address. This makes the kernel return to s_readv () (€)), not
to the instruction when the exception occurs. When GService
is invoked through s_readv (), the service restores the saved
return address to return to the resume point of the sensitive
function (@).

2) Call site protection: Protecting sensitive data at a call
site is similar to using the secure stack on an exception. In
the call site protection, the Ginseng compiler does the most
of the job because the call site is known at compile
time. GService’s goal for the call site protection is to restore
sensitive data to the right call site, as instances of the same
function call can be recursive or concurrent.

The compiler-assigned call site identifier helps GService
recognize which sensitive data belong to which call site, but it
is insufficient because a call site called recursively or concur-
rently will have the same identifier. If GService with no app
logic cannot distinguish those calls with the same identifier, it
may restore wrong sensitive data after a call site. To support
recursive calls with thread-safety, the service employs two
techniques. It first identifies a call site by its identifier and
stack pointer, which differs per thread. Second, GService uses
a LIFO-style storage to support recursive calls. As a result, it
restores the most recently saved sensitive registers first when
recursive calls return with the same identifier.

D. Control-flow integrity (CFI)

Ginseng ensures CFI only when sensitive data are in reg-
isters, i.e., when calling a function with sensitive parameters,

returning a sensitive value, and restoring sensitive data from
the secure stack.

1) Function pointer and return: When a sensitive function
invokes another function through a function pointer and passes
sensitive data through parameters, the sensitive data in registers
for parameter passing are at risk. For example, in line [34] of
[Figure 2| calling genCode () as a function pointer. Because
the address of a function is dynamically determined at runtime,
an attacker may tamper with the function pointer to access
sensitive data in registers. Similarly, when a function returns a
sensitive datum, an attacker may try to compromise the return
address. Direct function calls (not through function pointers)
are included in the code pages, e.g., line in :Flgure E]; thus,
the code integrity of a sensitive function (IV-B) provides CFI
for them.

To provide the CFI with a function pointer, Ginseng treats
the pointer as sensitive and checks the integrity of the pointed
function. Within a sensitive function, the compiler promotes
a function pointer with sensitive parameters to a sensitive
variable. Once the callee’s address is loaded from memory
to a sensitive register, the address is no longer accessible to
the OS because it is a value in a sensitive register. When the
caller sends a request to GService to push sensitive registers
to the secure stack before a call site, the service checks the
callee’s integrity along with the call site protection ([V-C2).
The service moves sensitive data to registers for parameter
passing, only when the callee is sensitive and integral.

When a function returns a sensitive value to the caller,
s_exit () inserted by the compiler at the exit point
sends a request to GService, which in turn checks the
returning-to function’s integrity.

Example: is disassembled code when compiling
[Figure 2] after changing genCode of line to a function
pointer. The hide/move encoding in x2 tells that register x14
is a function pointer. The forth argument of s_writeMoveV ()
is 1 and indicates that the callee is pointed by a function
pointer. The service searches the very next branch instruction,
blr x14 in line [I6] and checks whether the callee is a
sensitive function and integral at runtime.

2) Restoring sensitive data from the secure stack: GService
restores sensitive data from the secure stack after exception
handling and a call site, which can lead to leakage if the service
returns to a compromised function, not to an integral sensitive
function.

Since a compiler-assigned call site identifier is coded in a
function body, an attacker may read an identifier from a binary
file and try to illegally get sensitive data with the retrieved
identifier. On an exception, however, GService always returns
to the saved resumption address of a sensitive function (@
in [Figure 5); thus, an attack has no chance to break the CFL
Thus, GService provides the CFI after a call site, by checking
whether the return address belongs to a sensitive function.

To provide CFI for a call site and restore sensitive data
only for the right call site, the service must identify who
requests the data to restore. GService finds the information on
the requester from two addresses in the exception link register
and the link register. The exception link register tells who sends
the request to the service, which must be s_readv (). The link

Figure 7. Protection Against Compromised Insensitive Functions: the service
ignores the s_read () request from an unchecked sensitive function (Q))
without an fCB instance. One from a checked sensitive function (@) is served,
but Ginseng keeps the sensitive data from leaving registers and sanitizes the
data from registers at the exit point.

register tells who calls s_readv () to send the request. Thus,
only when the former address belongs to s_readv () and the
latter address belongs to a sensitive function with an fCB
instance, the service decrypts sensitive data from the secure
stack to sensitive registers. When checking the latter address,
the service translates the address to a physical address and then
compares it with the start address and size in an fCB instance

(LV-B).

E. Attack Surface Control & Analysis

We discussed how Ginseng protects sensitive data against
an attacker fabricating a call site identifier and exploiting
control flow, in In this section, we further discuss how
Ginseng isolates GService from the existing software in the
Secure world, why the dynamic trapping is integral, why
(compromised) insensitive functions do not risk sensitive data,
and the limitation of Ginseng.

1) Make GService bullet-proof: Ginseng requires GService
to run in the Secure world, which is the TEE. An attacker
may try to exploit the service’s vulnerabilities to compromise
the TEE as demonstrated by previous attacks [36], [S5], [63].
We take three measures to reduce the attack surface from
GService. First, we implement GService with a safe language,
specifically Rust, which is type and memory safe [7]. Second,
GService uses a statically allocated, private heap. These two
measures confine GService’s memory accessibility and enforce
software fault isolation [[70|]. Finally, we minimize the use of
unsafe code, i.e., assembly code in GService for accessing
system registers. Given its small size, 190 SLOC in our
implementation, its correctness can be easily verified using
tools like Vale [9]].

2) Attack Surface Analysis: Ginseng effectively prevents
the OS from compromising dynamic trapping by its design.
Because the higher privilege mode and code integrity forbid
the OS from influencing @, @, and @ in the OS
may try to compromise @ or @, instead. GService ensures the
higher privilege call before loading sensitive data (TV-A)); thus,
whenever sensitive data are in registers, exception trapping

(@) is always enabled. Ginseng does not assure @; however,
it does not break data confidentiality nor integrity because

GService will not restore sensitive data unless requested via
s_readV (). Moreover, once the service loads sensitive data
for an exception, it always bypasses the kernel and returns to
the resume point.

An attacker can completely rewrite an insensitive function.
While this does not risk sensitive data, thanks to the code
integrity of sensitive functions, the attacker can jump into the
middle of a sensitive function as illustrated in by
compromising an insensitive function. At @), a compromised
control flow jumps into a sensitive function that has not been
executed and calls s_read () to loads sensitive data from
the Secure world. In this case, GService has not checked the
code integrity nor created an fCB instance for the function;
it simply ignores ()) any requests from the function. If the
sensitive function’s code integrity is already checked, at @@,
the compromised control flow can legitimately read sensitive
data using s_read () (@) in the sensitive function. However,
since the sensitive function’s code integrity is ensured (IV-B]),
the read sensitive data will reside in registers and remain
inaccessible to the attacker.

What Ginseng cannot prevent is replay attacks with
s_write (). These attacks may break the integrity of sensitive
data but cannot break confidentiality. A hypothetical example
is that a function declares a nonce or salt as sensitive data
and updates it using the secure API. Because the jump @
in [Figure 7| can legitimately read and write sensitive data,
this attack may overwrite the value. Thus, if a nonce or salt
is overwritten, a transaction will be ignored and the hashed
result will differ. However, the overwriting does not affect the
confidentiality.

V. IMPLEMENTATION

This section reports our ARM-based implementation of
Ginseng. The EL3 of TrustZone provides a higher privilege
than that of the OS. The direct communication between an app
and GService leverages the security violation (IV-A)), which
is triggered by the app accessing Secure world memory and
captured by GService, therefore bypassing the OS. Finally, by
using EL2 as a trap relay point (IV-B)), the service can trap
writings to the virtual memory control registers.

We modify the Linux kernel v4.9 to make the kernel page
table read-only and to relay page table modifications to GSer-
vice, in a way similar to TZ-RKP [4] and SPROBES [25]]. In a
complete system, GService should verify that the modifications
do not map a sensitive function’s code pages to the kernel
address space, also similar to TZ-RKP. Because our current
prototype does not implement this verification, the overhead
we report later does not include that of the verification. The
verification overhead, however, would be negligible for our
benchmarks: it is small [|6] and happens rarely. The verification
is necessary only when there is an update to the kernel page
table such as system booting and process creation.

A. Static Protection

For the static protection, we prototype Ginseng compiler
based on LLVM v6.0. The compiler allocates up to seven
registers x15-x9 for sensitive data. It can be easily extended
to support floating point values and more registers for sensitive
data.

e Ap P \
L ©
—“5’. é Insensitive | Sensitive Function [A] | | Sensitive Function [B]

Data and Code Ginseng Library s_read() =
, :
Secure Stack D—U_’ §
T3 RlCh encrypted| |<C S
% 32 Sensitive i | Sensitive o
o= Operating System Context | | Context é
[A] [BI\jjeee @
(2)
\

Ty T T eee—— 3 =}
2 Ginseng Service 5
8 Function |[Function 2
= § UART LED Control Control 2
2 Driver Driver Block [A]|Block [Bljese 3
el s @
o}

H

Figure 8. Secure Input-to-App Data Path: when an app requests sensitive
user input, GService reads data from the dedicated input device (UART)
and delivers them to sensitive registers specified in s_read () bypassing
the OS. The service uses the dedicated LED as a secure input indicator by
turning it on only when the secure input device is being used.

B. Runtime Protection

GService: We prototype GService running on ARM
Trusted Firmware (ATF) v1.4. As designed, we implement
most of it in Rust. Instead of linking the Rust standard library,
we use linked_list_allocator [49] to implement its heap
with statically allocated memory. There are only 190 lines of
assembly code for accessing system registers such as the secure
configuration register. We import SHA1 and AES assembly
implementations from the Google BoringSSL project and use
them as a cryptographic library. It helps reduce overhead by
using ARM’s cryptographic instructions with 128-bit vector
registers.

The Ginseng library implements the secure APIs that
GService exposes (Table TI). Each API is implemented with
four lines of assembly code; it accesses a dedicated secure
address to trigger a security violation. The address range is
0xF400.0000-0xF400_5000 in the HiKey board. The library,
statically linked to the app, increases the binary size by 2.7 KB.

C. Secure User Input

To demonstrate Ginseng’s practicability, we implement a
secure input-to-app data path as illustrated in similar
to TrustUI [41]] and TruZ-Droid [72]. This results in a first-of-
its-kind system that protects sensitive data for its entire lifetime
on ARM-based systems without app logic in the TEE. We
map the addresses of UART?2 and LED?2 to the Secure world’s
address space in hikey_init_mmu_el3() of ATF and use
the devices as secure I/O. We also implement their device
drivers in the Secure world. If GService cannot find a datum
matching with the identifier of s_read (), the service turns
on LED2, receives input from UART2 and delivers it to the
sensitive register specified in s_read (). The drivers are also
implemented in Rust with inline assembly of 161 SLOC.

VI. EVALUATION

We evaluate Ginseng to answer the following questions.

e How much overhead does Ginseng impose to protect
sensitive data? How much does each design component
contribute?

10

801
—~ 70
Q
]
Y 60
)
m 50
o
—
~— 40
>
2 301
(0]
e
© 20 —@— Exception: saving + restoring

101 —A— Call site: saving + restoring

—— Call site: saving
0
1 2 3 4 5 6 7
Number of sensitive registers
Figure 9. Overhead for Accessing the Secure Stack: the main source of

the overhead for the secure stack at a call site is to encrypt and decrypt
sensitive data and allocate a storage for them. On an exception, the four-time
world switching, encryption, and decryption imposes the additional overheads.
The standard deviations for a call site and exception are 0.66 K cycles and
1.03 K cycles at maximum, respectively.

e What is end-to-end performance overhead in practical
applications? How much does each design component
contribute to the overhead?

e How hard is it to apply Ginseng?

A. Microbenchmark

We report overheads due to the Ginseng interposition in
a sensitive function. In each benchmark, we conduct 1,000
iterations and measure CPU cycles using ARM’s performance
monitoring unit (PMU). We make PMU count cycles at all
exception levels in both Normal and Secure worlds through
the PMU filter register (PMCCFILTR_ELO). We reset and read
PMU from the user space to measure the overheads from an
application’s perspective, and theses operations take less than
10 cycles.

Overhead at entry and exit points: We first report the
overhead at a sensitive function’s entry point. As mentioned
in Ginseng compiler inserts a call to s_entry () at a
sensitive function’s entry point, and GService walks the kernel
page table, hashes the function code, and allocates an fCB
instance. The service does this only when a sensitive function
is first executed; afterward, it references the fCB instance. We
evaluate the overhead with varying the function size from 64
to 4096 bytes The overhead at an initial visit to a function
is 11.81 Mcycles. 96 % (11.33 M cycles) of the overhead is
due to the kernel page table walk and 0.12 % (13.92 K cycles)
is for hashing function code. The remaining cycles are for
instantiating an fCB instance. When the same function is re-
executed, the overhead becomes 2.95 K cycles, which is for
searching the fCB instance and checking whether the program
counter of the user space in ELR_EL3 is within the function’s
range. At an exit point of a sensitive function, the compiler
inserts a call to s_exit (). The overhead at an exit point is
3.10 K cycles as the work is simple such as sanitizing sensitive
registers and deactivating the exception redirection.

Overhead at a call site: Before calling a function within
a sensitive function, GService invoked by s_writeMoveV ()
encrypts and saves sensitive registers to the secure stack, and
moves sensitive data to registers for parameter passing if used

as parameters. After the call, GService invoked by s_readv ()
decrypts and restores the registers. We plot the overhead to
protect sensitive data on a call site in[Figure 9] The overhead to
save sensitive data starts from 22 K cycles and increases along
with the number of sensitive registers. The figures shows a
small jump from four to five sensitive registers. It is because
the vector implementation used for the storage increases its
capacity from four to eight when saving the fifth elements.
Saving sensitive registers takes longer than restoration because
of the secure stack frame allocation. The overhead for restoring
registers starts from 10 K cycles and increases linearly along
the number of registers to be restored.

Overhead on an exception: Exception redirection to
protect sensitive data imposes an overhead of 58-74 K cycles
depending on the number of sensitive registers, as shown in
Unlike the overhead at a call site, the overhead
does not jump when saving five registers because GService
preallocates the secure stack frame at a function’s entry point
not on an exception. For this benchmark, we use a synchronous
exception using the SVC instruction in our benchmark program.
Because it is impossible to time an interrupt in the user space,
we instead trigger a synchronous exception and measure the
overhead to handle the exception. We invoke the getppid ()
system call using svc as LMBench does for the null system
call benchmark and exclude the cycles for the OS to serve the
system call.

Overhead on s_read() and s_write(): A developer
uses the two APIs to read and write sensitive data from and to
GService. Both APIs impose the least overhead of 2.8 K cycles
in the microbenchmark as their roles are simple. In both APIs,
GService first reads two addresses in the exception link register
and link register and identifies the requester like in If
an fCB with the latter address is found, the service reads or
writes a sensitive datum and returns to the application.

B. Applications

We apply Ginseng to four practical apps to quantify the
engineering effort and measure end-to-end overhead. In their
original forms, these apps save their secrets in the memory
as cleartext and as a result, are vulnerable to an untrusted OS.
Using Ginseng, we revise them so that the secrets are stored in
their secure stacks and never enter the memory in the Normal
world as plaintext.

1) Two-factor Authenticator: The two-factor authenticator,
based on RFC 6238 [33]], enables a service provider to test
a user’s credentials with both a regular password and a time-
based onetime password (OTP) that changes every 30 seconds.
To use the two-factor authentication, the service provider and
the user share a secret key and generate the OTP by performing
HMAC-SHAL on the current time and the key. At the user end,
the authenticator in a mobile device can encrypt the key in a file
system. However, to generate an OTP, the authenticator must
decrypt and store the key in the memory, making it vulnerable
to a compromised OS.

Development effort: We implement the authenticator with
100 lines of C code and 150 lines of assembly implementation
of SHA1 imported from the Google BoringSSL project. Since
we implemented the authenticator without Ginseng ourselves,

11

TABLE II1. OVERHEAD BREAKDOWN (CYCLE)
Kernel page table walk and call site protection are dominant overhead factors
Classifier

Authenticator wpa_supplicant

Baseline 37 K 219 M 1.7 M
Kernel page table walk 45,356 K 45 M 23 M 113 M

=l can i . 630K | 6429 M 1,640 M 44M
3 Call site protection (17 times) | (131,078 40,988 times) | (137 times)
5 ‘ o 9K 6M 6M 04 M
O | Exception redirection | ¢ |3 (jes) (99.40 78.52 times) | (5.4 times)
GService overhead 851 K 661 M 411 M 17M
Total 46933 K [7.361 M 229 M | 19.6 M

(naive) (optimized)

applying Ginseng to it took us a trivial amount of time.
The authenticator processes a key and reversible intermediate
keys in four sensitive functions, so we added the sensitive
keyword at ten places of these functions. Ginseng protects
the key read from GService. We have tested its correctness
by logging into popular web sites, Facebook, Amazon, and
Twitter, and it can be used for workstation login through
PAM [59].

Performance: As shown in [Table III} Ginseng imposes an
overhead of 46 896 K cycles to the authenticator. The kernel

page table walk constitutes 97 % of the overhead. It is because
GService walks the kernel page table four times for four
sensitive functions. The call site protection causes 1.5 % of the
overhead due to 17 times of function calls within the sensitive
functions. Since its binary size is 10 KB and sensitive data
resides in registers only for 831 us, we observe no page fault
and only two interrupts during the 15 iterations. The exception
redirection causes the overhead of 9K cycles on average.
Although the overhead due to the kernel page table walk is
seemingly high, it is less than 50 ms and, more importantly,
onetime overhead when the sensitive functions are first called.
Afterwards, when the authenticator generates a new OTP, the
overhead becomes 1540 K cycles, less than 2 ms.

2) wpa_supplicant: wpa_supplicant is open-source soft-
ware that is used by numerous Linux systems, including
Ubuntu and Android, to connect to a wireless network us-
ing the Wi-Fi Protected Access (WPA) protocol. Vanilla
wpa_supplicant reads a cleartext password from a configuration
file or a network manager [26] and saves it in the memory. It
derives the key for encryption/decryption from the password.
Because the password is stored as cleartext, it is vulnerable to
an untrusted OS.

Development effort: The Ginseng-enabled wpa_supplicant
saves the password in GService; the configuration file only
contains the UUID to retrieve it. We modify 25 SLOC out of
400K SLOC in wpa_supplicant so that it reads UUID for a
password from the configuration file. We also modify 90 SLOC
out of 513K SLOC in OpenSSL so that OpenSSL protects
the password with Ginseng. We import BoringSSL’s assembly
implementation of SHA1 like in two-factor authenticator. It
took one day for the first author, who was unfamiliar with
wpa_supplicant and OpenSSL, to apply Ginseng.

Performance: We measure CPU cycles and time span from
its start to when the WPA association is completed. We discuss
the performance in a naive implementation in this section and
defer discussion on an optimized implementation to

In the naive implementation, the call site protection causes
90 % of the overhead. This is because wpa_supplicant calls a
sensitive function that repeatedly calls 1ibc and other sensitive
functions. This leads to 131 K function calls and constitutes
six billion cycles for the call site protection. The kernel page
table walk introduces the same amount of overhead as that of
the two-factor authenticator because both have four sensitive
functions. Its binary size and running time, 4.2 MB and 20 sec
respectively, lead to more exception redirections. During the
20 sec execution, we observe two types of exceptions, instruc-
tion and data aborts (a.k.a. page fault) and per-core timer
interrupts. This exception redirection constitutes 0.1 % of the
overhead. GService contributes 9% of the overhead due to
the repeated entries to and exits from sensitive functions, and
internal storage (de)allocation thereof.

3) Learned Classifier (Decision Tree): Decision trees are
light-weight classifiers that are widely used in practice [52].
A node in a tree selects an attribute of data based on the
criteria and branches down to a leaf node for classification.
The tree is an important intellectual property by the software
vendor since it often requires valuable training dataset and
efforts [[69]. The software vendor often includes the tree in
the software package distributed to users, e.g., installed in
a smartphone. While the tree can be encrypted in storage,
it must be decrypted to classify data. Once in memory, its
confidentiality or integrity can be compromised by the OS [51].
As the criteria in tree nodes, i.e., attributes to be chosen at a
node, determine a decision tree, Ginseng protects criteria in
each node of a decision tree.

Development effort: We adopt the C4.5 decision tree
implementation used by recent works on model security [12],
[24] and use Ginseng to protect the information on what
attribute to be chosen at a decision node. We only need to
add six lines of code into the 5 K SLOC for declaring a single
sensitive variable and reading the attribute information to the
variable.

Performance: We train the tree with the voting dataset
supplied with the implementation. As shown in 63 %
of the overhead is due to the kernel page table walk and 25 %
is for the call site protection. During the 15 iterations, we
observe 81 exceptions which constitutes 2 % of the overhead.
The implementation has a single sensitive function which is
recursively called with no other function calls; thus, the 137
call site protections are only for recursive calls. The total
overhead due to Ginseng is 18 M cycles; however, 63 % of the
overhead is a one-time overhead due to the kernel page table
walk, and the reoccurring overhead of 7M cycles is less than
10ms and barely perceptible when used interactively [61].

4) Nginx web server: Many IoT devices such as IP camera
and wireless router [35]], [48]], [71]] embed a web server, Nginx.
For secure communications, the web server uses the Transport
Layer Security (TLS) protocol, which derives session keys
from a master key and uses them to encrypt and decrypt
communications. Although OpenSSL, a TLS library used by
Nginx, sanitizes session keys when a session ends, it saves the
the master key in the memory for five minutes for session
resumption [39]], which is vulnerable to a compromised OS.

Development effort: In our modification, we protect the
master key and derive the session keys without storing the

12

master key in the memory. We modify 200 SLOC in OpenSSL
so that it reads the master key from GService. We again import
BoringSSL’s assembly implementation of SHAS512, which is
used for SHA384 and has 980 SLOC. The modification is
necessary largely due to limitations in our compiler prototype,
which does not yet support an array with sensitive data. As a
result, we have to manually modify OpenSSL to break down
a 48-byte master key in an array into multiple variables. A
full-fledged compiler supporting large or complex data types
will eliminate this manual effort; and we believe extending
the compiler for this only requires engineering effort. It took
two days for the first author to apply Ginseng despite the
complexity of OpenSSL.

Performance: We perform Apache benchmark (ab) 10 000
times on transferring 1-1024 KB. We do not observe any
meaningful difference. For example, when we send 1KDB
data over HTTPS, the vanilla web server processes 31.18
transaction per sec and the Ginseng-enabled server processes
31.35 transaction per second. This is because network and
file system activities readily mask Ginseng’s overhead. We
note related efforts aiming at x86-based systems such as
Fides [68] and TrustVisor [44] incur measurable overhead, up
to 16 % [68] for the Apache web server.

C. Optimizing Ginseng’s overhead

Following our experience of applying Ginseng to the above
applications and quantifying its overhead, we now discuss
ways that Ginseng’s overhead can be reduced. Ginseng’s
recurring overhead mainly comes from the use of secure stacks.
Two factors determine the cost of secure stack uses: the number
of function calls within a sensitive function, the number and
size of sensitive variables within a sensitive function.

The number of function calls inside a sensitive function
determines the overhead from call site protection. For exam-
ple, in wpa_supplicant (VI-B2), the overhead with the naive
implementation increases the execution time by 4 sec. The third
row of shows that 90 % of the overhead comes from
multiple call sites repeatedly invoked in loops. To reduce the
overhead due to the 131 K call site protections, we reduce the
number of call sites within sensitive functions by inlining the
small callees, e.g., memset () and memcpy () . This reduces the
overhead by 75 %, from 6.4 B cycles to 1.6 B cycles as shown
in the table.

When sensitive variables are many or large (V-A), the
compiler may have to spill some of them to the secure stack,
incurring an overhead similar to that of call site protection.
Therefore, developers should leverage their knowledge about
their apps to minimize the number and size of sensitive
variables ([II-B). For example, in wpa_supplicant, the Wi-Fi
password cannot be reversely engineered from a derived key
of 32 bytes. Therefore, there is no need to protect the derived
key.

Ginseng incurs a onetime overhead when walking the
kernel page table to protect the code integrity of a sensitive
function. This overhead is determined by the number of
sensitive functions (IV-B). By aggregating multiple sensitive
functions into one, one can reduce this onetime overhead.
For example, we aggregate the four sensitive functions of
wpa_supplicant into two to reduce the overhead from the

kernel page table walk by 50 %, as shown in the second row
of However, such aggregation creates a sensitive
function with more sensitive registers, which increases register
pressure and may need higher recurring overhead. There-
fore, developers must balance between onetime and recurring
overheads using their knowledge of the app and the number
of sensitive registers allowed by the compiler. For example,
when aggregating sensitive functions of wpa_supplicant, we
are wary that the compiler allows up to seven sensitive registers
(V-A). Thus, we aggregate sensitive functions only when the
aggregation does not lead to more than seven sensitive registers
in the aggregated function.

VII. RELATED WORK

Ginseng protects sensitive data against the untrusted OS,
with a fine granularity to reduce the overhead. Ginseng also
protects the data against cold-boot attacks without trusting the
OS. In this section, we discuss how previous works protect
sensitive data against the untrusted OS and cold-boot attacks.

A. Protecting secrets against untrusted OS

1) App Logic in Isolated Execution Environment: Previous
works provide a special, isolated execution environment based
on a higher privilege mode, e.g., hypervisor mode, or hardware
security extension, i.e., Intel SGX. The environment is inac-
cessible to the rest of the system and provides protections on
code and data in it [8]]. Thus, previous works run applications
with sensitive data or their sensitive parts in this isolated
environment. Ginseng does not provide such an execution
environment; instead, it protects only sensitive data by keeping
them in registers. By not protecting insensitive data, Ginseng
reduces the overhead of protection. Using registers, Ginseng
also protects sensitive data against lago attacks [13]], which
compromise an application through manipulated system call
return values.

One can protect an unmodified application by simply
running it inside an isolated environment. However, blindly
protecting the entire application imposes high overhead, which
motivates us to focus on only sensitive data. Overshadow [14]
uses a hypervisor to present different memory views to the
OS and a protected application, a technique called memory
cloaking. CloudVisor [73] extends this idea to virtual ma-
chines; trusted software in the hypervisor mode interposes
interactions between guest VMs and the existing VMM that
is deprivileged from the hypervisor mode to the kernel mode.
These hypervisor-based solutions are susceptible to the Iago
attack and incur prohibitively high overhead due to excessive
intervention for memory cloaking. SICE [35]] constructs an iso-
lated execution environment using the x86 system management
mode (SMM) and a RAM resizing feature available only in
AMD processors. Moreover, it must suspend the OS when the
isolated application is running, incurring additional overhead.

Recent hardware extensions allow an isolated execution en-
vironment to be constructed with lower overhead. For example,
Intel SGX supports such isolated environments as enclaves.
Haven [_8] runs a protected application in a dedicated enclave
together with a trusted library OS. Panoply [64] reduces the
TCB size by removing the OS from the enclave; instead, it
provides a thin container in the enclave through which an

13

application in the enclave can access the OS outside of the en-
clave. Ryoan [32]] extends the isolated execution environment
supported by Intel SGX to a distributed system. However, the
use of SGX enclave still incurs significant overhead, up to
34x [50], because enclave exits are expensive. SCONE [3|]
and Eleos [50] reduce this overhead. Unlike Haven, SCONE
excludes the library OS from the enclave and issues asyn-
chronous system calls through shared memory to avoid enclave
exits. Eleos goes even further by handling page faults within an
enclave through ActivePointers [62]] and avoids enclave exits
due to page faults.

All these works have a common problem, which motivates
Ginseng: while protecting sensitive data, they also protect
insensitive data and as a result, incur disproportionally high
overhead. For example, despite clever optimization, Eleos
slows down memcached 3.2x, and SCONE degrades Apache
throughput by 20 %. None of these works defend the secrets
against cold-boot attacks as Ginseng does.

One can reduce the overhead of protection by only running
the sensitive part of an application in the isolated execution
environment. Flicker [45], TrustVisor [44], and InkTag [31]
encapsulate sensitive functions and their data and run the
sensitive code in an isolated execution environment provided
by a hypervisor. The hypervisor’s roles is similar to that
of Overshadow and CloudVisor; however, this approach is
only available in x86 systems because the ARM architecture
disallows an application to directly use the hypervisor call as
is required by previous works. Importantly, for SGX-based
isolated execution environments, this approach can also incur
high overhead because communication between app partitions
is expensive due to enclave exits.

2) App Logic in Trusted Execution Environment: Related
to Intel SGX, ARM TrustZone technology also provides
a hardware-isolated environment; this environment is called
the trusted execution environment (TEE) because the rest of
the system is not only inaccessible to the environment but
trusts it. TrustShadow [29] runs an entire app in TrustZone’s
TEE, substantially increasing the latter’s attack surface. Liu
et al. [43], AdAttester [40], TrustTokenF [77], and TLR [60]
partition apps into sensitive and insensitive parts and only run
the sensitive parts in the TEE, which still increases the latter’s
attack surface. Ginseng does not require any app logic in the
TEE and provides a finer protection granularity, sensitive data,
not all data in a sensitive function.

B. Protecting secrets against cold-boot attacks

When an attacker can physically access the hardware, the
memory image can be extracted and analyzed by cold-boot
attacks [30], [56], [57]]. Countermeasures use alternative types
of memory. Sentry [15] uses on-chip SRAM (iRAM) for
inaccessibility and boot-time zero-filling by low-level device
firmware. Cache is also used as an alternative to iRAM [28]],
[75], [[76] or a combined way [[15]. TRESOR [46], Amne-
sia [65]], and ARMORED [27]] use CPU registers. Sentry [[15]]
and all the prior works using registers trust the OS. CaSE [[76]
does not trust the OS; it locks a sensitive application in the
cache. Not only is the application limited to the size of the
cache, the OS has to be stopped on all memory-coherent cores
when the application runs. Ginseng distrusts the OS and is

deployable to all ARM systems that support ARM TrustZone
and all x86 systems that support the hypervisor mode.

VIII. CONCLUDING REMARKS

In this work, we present Ginseng which protects sensi-
tive data on the untrusted OS. We identify its architectural
requirements and show that both ARM TrustZone and x86 hy-
pervisor mode meet the requirements. To reduce unnecessary
overheads, Ginseng keeps sensitive data in registers only when
they are being processed. When the data have to be saved to
the stack, Ginseng uses the secure stack which the OS cannot
decrypt. We build Ginseng prototype based on ARM TrustZone
and show Ginseng can be applied to practical applications with
reasonable efforts and overhead. For example, the Nginx web
server protects the TLS master key with modification to only
0.2 % of the source code.

Although we prototype Ginseng in an ARM-based device,
we envision that adopting a different architecture could make
the implementation simpler and lead to less overhead. With
the hypervisor level of x86, for example, the secure APIs
can be implemented with hypercalls, instead of security
violation. Moreover, there is no need for forwarding the kernel
page table modification trapped in the hypervisor to a higher
level, i.e., the Secure world (IV-B)). Finally, dynamic exception
trapping will not be necessary because the hypervisor
can directly intercept exceptions.

ACKNOWLEDGEMENTS

This work was supported in part by NSF Awards #1611295,
#1701374 and #1730574. Dr. Dan Wallach and Dr. Nathan
Dautenhahn provided useful pointers to related work, espe-
cially possible attacks. Sicong Liu pointed us to the decision-
tree classifier used in the evaluation. The authors are grateful
to the anonymous reviewers and the paper shepherd Dr. Adam
Bates for constructive reviews that made the paper better.

REFERENCES
[11 W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A secure and reliable
bootstrap architecture,” in Proc. IEEE Symp. Security and Privacy (SP),
1997.

ARM, “ARM security technology: Building a secure system using
TrustZone technology,” http://infocenter.arm.com/help/topic/com.arm.
doc.prd29- genc-009492¢c/PRD29-GENC-009492C_trustzone_security_
whitepaper.pdf, 2009.

S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell et al.,
“SCONE: Secure Linux containers with Intel SGX,” in Proc. USENIX
Conf. Operating Systems Design and Implementation (OSDI), 2016.

A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh,
J. Ma, and W. Shen, “Hypervision across worlds: Real-time kernel
protection from the ARM TrustZone secure world,” in Proc. ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2014.

A. M. Azab, P. Ning, and X. Zhang, “SICE: a hardware-level strongly
isolated computing environment for x86 multi-core platforms,” in Proc.
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2011.

A. M. Azab, K. Swidowski, J. M. Bhutkar, W. Shen, R. Wang, and
P. Ning, “SKEE: A lightweight secure kernel-level execution environ-

ment for ARM,” in Proc. Network and Distributed System Security
Symposium (NDSS), 2016.

[3]

[4]

[5]

[6]

14

(71

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

A. Balasubramanian, M. S. Baranowski, A. Burtsev, A. Panda, Z. Raka-
mari¢, and L. Ryzhyk, “System programming in Rust: Beyond safety,”
in Proc. Wrkshp. Hot Topics in Operating Systems (HotOS). ACM,
2017.

A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an
untrusted cloud with Haven,” in Proc. USENIX Conf. Operating Systems
Design and Implementation (OSDI), 2014.

B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
B. Parno, A. Rane, S. Setty, and L. Thompson, “Vale: Verifying high-
performance cryptographic assembly code,” in Proc. USENIX Security
Symp., 2017.

F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “CAn’t
touch this: Software-only mitigation against rowhammer attacks target-
ing kernel memory,” in Proc. USENIX Security Symp., 2017.

S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R. Sadeghi, and
B. Shastry, “Practical and lightweight domain isolation on Android,”
in Proc. ACM Workshop on Security and Privacy in Smartphones &
Mobile Devices (SPSM), 2011.

Y. Cao and J. Yang, “Towards making systems forget with machine
unlearning,” in Proc. IEEE Symp. Security and Privacy (SP), 2015.

S. Checkoway and H. Shacham, “Tago attacks: Why the system call API
is a bad untrusted RPC interface,” in Proc. ACM Int. Conf. Architectural

Support for Programming Languages & Operating Systems (ASPLOS),
2013.

X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow: a
virtualization-based approach to retrofitting protection in commodity
operating systems,” in Proc. ACM Int. Conf. Architectural Support for
Programming Languages & Operating Systems (ASPLOS), 2008.

P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H. Raj, S. Saroiu,
and A. Wolman, “Protecting data on smartphones and tablets from
memory attacks,” in Proc. ACM Int. Conf. Architectural Support for
Programming Languages & Operating Systems (ASPLOS), 2015.
CVE-2015-6639, |https://nvd.nist.gov/vuln/detail/CVE-2015-6639.
CVE-2015-8999, https://nvd.nist.gov/vuln/detail/CVE-2015-8999.
CVE-2015-9007, https://nvd.nist.gov/vuln/detail/CVE-2015-9007.
CVE-2016-1919, |https://nvd.nist.gov/vuln/detail/CVE-2016-1919,
CVE-2016-1920, https://nvd.nist.gov/vuln/detail/CVE-2016- 1920,
CVE-2016-2431, https://nvd.nist.gov/vuln/detail/CVE-2016-2431.
CVE-2016-3996, https://nvd.nist.gov/vuln/detail/CVE-2016-3996.
CVE-2016-5349, https://nvd.nist.gov/vuln/detail/CVE-2016-5349.

H. Gao, Y. Chen, K. Lee, D. Palsetia, and A. N. Choudhary, “Towards
online spam filtering in social networks.” in Proc. Network and Dis-
tributed System Security Symposium (NDSS), 2012.

X. Ge, H. Vijayakumar, and T. Jaeger, “SPROBE: Enforcing kernel
code integrity on the TrustZone architecture,” in Proc. IEEE Mobile
Security Technologies (MoST), 2014.
GNOME, “GNOME network manager,”
Projects/NetworkManager, 2017.

J. Gotzfried and T. Muller, “ARMORED: CPU-bound encryption for
Android-driven ARM devices,” in Proc. IEEE Int. Conf. on Availability,
Reliability and Security (ARES), 2013.

L. Guan, J. Lin, B. Luo, and J. Jing, “Copker: Computing with private
keys without RAM.” in Proc. Network and Distributed System Security
Symposium (NDSS), 2014.

L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
“TrustShadow: Secure execution of unmodified applications with ARM
TrustZone,” in Proc. ACM Int. Conf. Mobile Systems, Applications, &
Services (MobiSys), 2017.

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest
we remember: cold-boot attacks on encryption keys,” in Proc. USENIX
Security Symp., 2008.

O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel,
“InkTag: Secure applications on an untrusted operating system,” in Proc.

ACM Int. Conf. Architectural Support for Programming Languages &
Operating Systems (ASPLOS), 2013.

https://wiki.gnome.org/

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://nvd.nist.gov/vuln/detail/CVE-2015-6639
https://nvd.nist.gov/vuln/detail/CVE-2015-8999
https://nvd.nist.gov/vuln/detail/CVE-2015-9007
https://nvd.nist.gov/vuln/detail/CVE-2016-1919
https://nvd.nist.gov/vuln/detail/CVE-2016-1920
https://nvd.nist.gov/vuln/detail/CVE-2016-2431
https://nvd.nist.gov/vuln/detail/CVE-2016-3996
https://nvd.nist.gov/vuln/detail/CVE-2016-5349
https://wiki.gnome.org/Projects/NetworkManager
https://wiki.gnome.org/Projects/NetworkManager

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]
[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

[57]

T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A distributed
sandbox for untrusted computation on secret data.” in Proc. USENIX
Conf. Operating Systems Design and Implementation (OSDI), 2016.

IETF, “TOTP: Time-based one-time password algorithm,” https://tools.
ietf.org/html/rfc6238, 2011.

Intel, Intel 64 and IA-32 Architectures Software Developers Manual,
2017, ch. 4.3.

B. Japenga, Security for Web-Enabled Devices. Circuit Cellar, 2016.

U. Kanonov and A. Wool, “Secure containers in Android: the Samsung
KNOX case study,” in Proc. ACM Workshop on Security and Privacy
in Smartphones & Mobile Devices (SPSM), 2016.

P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” in Proc. IEEE Symp. Security and
Privacy (SP), 2019.

B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication
in distributed systems: Theory and practice,” ACM Transactions on
Computer Systems, 1992.

J. Lee and D. S. Wallach, “Removing secrets from Android’s TLS,”
in Proc. Network and Distributed System Security Symposium (NDSS),
2018.

W. Li, H. Li, H. Chen, and Y. Xia, “AdAttester: Secure online mobile
advertisement attestation using TrustZone,” in Proc. ACM Int. Conf.
Mobile Systems, Applications, & Services (MobiSys), 2015.

W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li, “Building
trusted path on untrusted device drivers for mobile devices,” in Proc.
Asia-Pacific Workshop on Systems (APSys), 2014.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading kernel
memory from user space,” in Proc. USENIX Security Symp., 2018.

H. Liu, S. Saroiu, A. Wolman, and H. Raj, “Software abstractions for
trusted sensors,” in Proc. ACM Int. Conf. Mobile Systems, Applications,
& Services (MobiSys), 2012.

J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,
“TrustVisor: Efficient TCB reduction and attestation,” in Proc. IEEE
Symp. Security and Privacy (SP), 2010.

J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An execution infrastructure for TCB minimization,” in Proc.
The European Conf. Computer Systems (EuroSys), 2008.

T. Miiller, F. C. Freiling, and A. Dewald, “TRESOR runs encryption
securely outside RAM,” in Proc. USENIX Security Symp., 2011.

T. Miiller and M. Spreitzenbarth, “FROST: Forensic recovery of scram-
bled telephones,” in Int. Conf. on Applied Cryptography and Network
Security (ACNS), 2013.

OpenWrt Project, https://openwrt.org/,

P. Oppermann, “linked_list_allocator,” https://crates.io/crates/linked_|
list_allocator, 2018.

M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos:
ExitLess OS services for SGX enclaves.” in Proc. The European Conf.
Computer Systems (EuroSys), 2017.

R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif, “Misleading
worm signature generators using deliberate noise injection,” in Proc.
IEEE Symp. Security and Privacy (SP), 2006.

J. R. Quinlan, “Induction of decision trees,” Machine learning, pp. 81—
106, 1986.

L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller,
and S. Shayandeh, “Applnsight: Mobile app performance monitoring
in the wild,” in Proc. USENIX Conf. Operating Systems Design and
Implementation (OSDI), 2012.

RECG download page, http://download.recg.orgl

D. Rosenberg, “QSEE TrustZone kernel integer overflow vulnerability,”
in Black Hat Conference US, 2014.

B. Saltaformaggio, R. Bhatia, Z. Gu, X. Zhang, and D. Xu, “GUITAR:
Piecing together Android app GUIs from memory images,” in Proc.
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2015.

B. Saltaformaggio, R. Bhatia, X. Zhang, D. Xu, and G. G. Richard III,
“Screen after previous screens: Spatial-temporal recreation of Android

15

[58]

[591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

(73]

[74]

[75]

[76]

[(77]

app displays from memory images,” in Proc. USENIX Security Symp.,
2016.

J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” in Proc. of the IEEE, 1975.

V. Samar, “Unified login with pluggable authentication modules
(PAM),” in Proc. ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), 1996.

N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using ARM TrustZone
to build a trusted language runtime for mobile applications,” in Proc.
ACM Int. Conf. Architectural Support for Programming Languages &
Operating Systems (ASPLOS), 2014.

S. C. Seow, Designing and engineering time: The psychology of time
perception in software. Addison-Wesley Professional, 2008, ch. 3.

S. Shahar, S. Bergman, and M. Silberstein, “ActivePointers: a case for
software address translation on GPUs,” in Proc. Int. Symp. Computer
Architecture (ISCA), 2016.

D. Shen, “Exploiting TrustZone on Android,” in Black Hat Conference
Us, 2015.

S. Shinde, D. Le Tien, S. Tople, and P. Saxena, “Panoply: Low-
TCB Linux applications with SGX enclaves.” in Proc. Network and
Distributed System Security Symposium (NDSS), 2017.

P. Simmons, “Security through Amnesia: a software-based solution
to the cold boot attack on disk encryption,” in Proc. ACM Annual
Computer Security Applications Conference (ACSAC), 2011.

L. Soares and M. Stumm, “FlexSC: Flexible system call scheduling
with exception-less system calls,” in Proc. USENIX Conf. Operating
Systems Design and Implementation (OSDI), 2010.

W. Song, H. Choi, J. Kim, E. Kim, Y. Kim, and J. Kim, “Pikit: A new
kernel-independent processor-interconnect rootkit,” in Proc. USENIX
Security Symp., 2016.

R. Strackx and F. Piessens, “Fides: Selectively hardening software
application components against kernel-level or process-level malware,”
in Proc. ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2012.

F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Steal-
ing machine learning models via prediction APIs.” in Proc. USENIX
Security Symp., 2016.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in Proc. ACM Symp. Operating Systems
Principles (SOSP), 1994.

H. Xu, F. Xu, and B. Chen, “Internet protocol cameras with no password
protection: An empirical investigation,” in Proc. Int. Conf. Passive and
Active Measurement (PAM), 2018.

K. Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, and W. Du,
“TruZ-Droid: Integrating TrustZone with mobile operating system,”
in Proc. ACM Int. Conf. Mobile Systems, Applications, & Services
(MobiSys), 2018.

F. Zhang, J. Chen, H. Chen, and B. Zang, “CloudVisor: retrofitting
protection of virtual machines in multi-tenant cloud with nested virtu-
alization,” in Proc. ACM Symp. Operating Systems Principles (SOSP),
2011.

H. Zhang, D. She, and Z. Qian, “Android root and its providers: A
double-edged sword,” in Proc. ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2015.

N. Zhang, H. Sun, K. Sun, W. Lou, and Y. T. Hou, “CacheKit:
Evading memory introspection using cache incoherence,” in Proc. IEEE
European Symposium on Security and Privacy (EuroS&P), 2016.

N. Zhang, K. Sun, W. Lou, and Y. T. Hou, “CaSE: Cache-assisted
secure execution on ARM processors,” in Proc. IEEE Symp. Security
and Privacy (SP), 2016.

Y. Zhang, S. Zhao, Y. Qin, B. Yang, and D. Feng, “TrustTokenF: A
generic security framework for mobile two-factor authentication using
TrustZone,” in Proc. IEEE Trustcom/BigDataSE/ISPA, 2015.

https://tools.ietf.org/html/rfc6238
https://tools.ietf.org/html/rfc6238
https://openwrt.org/
https://crates.io/crates/linked_list_allocator
https://crates.io/crates/linked_list_allocator
http://download.recg.org

	Introduction
	Threat Model
	Ginseng Design
	Design Overview
	Architectural requirements

	Programming model
	Static Protection
	Allocating registers for sensitive variables
	Protecting sensitive registers at a call site

	Runtime Protection
	Ginseng internals
	Code integrity of a sensitive function
	Data confidentiality
	Exceptions within a sensitive function
	Call site protection

	Control-flow integrity (CFI)
	Function pointer and return
	Restoring sensitive data from the secure stack

	Attack Surface Control & Analysis
	Make GService bullet-proof
	Attack Surface Analysis

	Implementation
	Static Protection
	Runtime Protection
	Secure User Input

	Evaluation
	Microbenchmark
	Applications
	Two-factor Authenticator
	wpa_supplicant
	Learned Classifier (Decision Tree)
	Nginx web server

	Optimizing Ginseng's overhead

	Related Work
	Protecting secrets against untrusted OS
	App Logic in Isolated Execution Environment
	App Logic in Trusted Execution Environment

	Protecting secrets against cold-boot attacks

	Concluding Remarks
	References

